
1/4

June 22, 2016

Using the Windows::Globalization::Calendar object from
a Win32 app

devblogs.microsoft.com/oldnewthing/20160622-00

Raymond Chen

The Windows.Globalization.Calendar object is documented as supported for use by both

Windows Store apps and desktop apps. The UWP samples repo has a Calendar sample that

demonstrates how to use it from a Windows Store app, but how do you use it from a desktop

app?

That’s our motivation for looking at the Windows Runtime ABI. Normally, these objects are

consumed via a mechanism known as projection, whereby the low-level ABI guts of the

Windows Runtime are adapted to the usage pattern of a target language, so that the objects

feel more like language native objects.¹ That’s great if you’re using a projected language like

C++/CX, C#, or JavaScript, but if you want to use raw C++, then you’re going to be talking to

the ABI.

Crash course in projection:

Create an object

ABI
IWidget* widget;

 ActivateInstance(L"Widget", &widget);

C++/CX auto widget = ref new Widget();

C# var widget = new Widget();

JavaScript var widget = new Widget();

At the ABI level, you use Activate Instance to create an object; this projects as a

parameterless constructor. We’ll look at parameterized constructors some other time.

Method calls at the ABI level look pretty much like method calls in projection, except that

output parameters are passed explicitly as [out] parameters rather than as the return value of

the method. (The return value of ABI methods is always HRESULT . We’ll look at projected

HRESULT s later.)

https://devblogs.microsoft.com/oldnewthing/20160622-00/?p=93725
https://msdn.microsoft.com/library/windows/apps/windows.globalization.calendar(v=win.10).aspx
http://go.microsoft.com/fwlink/p/?LinkId=624043

2/4

Invoke a method

no return value with return value

ABI widget->Method(); widget->Method(&result);

C++/CX widget->Method(); result = widget->Method();

C# widget.Method(); result = widget.Method();

JavaScript widget.method(); result = widget.method();

Notice that the first character of the method name is converted to lowercase by the

JavaScript projection, so that it matches existing JavaScript convention.

And the last piece of projection for today: Properties.

Read property Write property

ABI widget->get_Foo(&v); widget->put_Foo(v);

C++/CX v = widget->Foo; widget->Foo = v;

C# v = widget.Foo; widget.Foo = v;

JavaScript v = widget.foo; widget.foo = v;

Okay, we now know just enough to be dangerous. We’ll write a little console program to get

the current date, get the name of the day of the week in a form intended to be displayed on its

own, get the last day of the current month, then skip forward six months and check whether

daylight saving time will be in effect. Remember, Little Programs do little to no error

checking.

3/4

#include <windows.h>
#include <wrl/client.h> // WRL::ComPtr
#include <wrl/wrappers/corewrappers.h> // WRL::Wrappers
#include <windows.globalization.h> // Windows::Globalization
#include <stdio.h>

namespace WRL = Microsoft::WRL;

int main(int argc, wchar_t** argv)
{
 CCoInitialize init;

 // C++/CX: auto cal = ref new Windows::Globalization::Calendar();
 WRL::ComPtr<ABI::Windows::Globalization::ICalendar> cal;
 Windows::Foundation::ActivateInstance(
 WRL::Wrappers::HStringReference(
 RuntimeClass_Windows_Globalization_Calendar).Get(), &cal);

 // C++/CX: auto dayOfWeek = cal->DayOfWeekAsFullSoloString();
 WRL::Wrappers::HString dayOfWeek;
 cal->DayOfWeekAsFullSoloString(dayOfWeek.GetAddressOf());

 wprintf(L"%ls\n", dayOfWeek.GetRawBuffer(nullptr));

 // C++/CX: lastDayThisMonth = cal->LastDayInThisMonth;
 INT32 lastDayThisMonth;
 cal->get_LastDayInThisMonth(&lastDayThisMonth);
 wprintf(L"Last day in this month is %d\n", lastDayThisMonth);

 // C++/CX: cal->AddMonths(6);
 cal->AddMonths(6);

 // C++/CX: isDST = cal->IsDaylightSavingTime;
 boolean isDST;
 cal->get_IsDaylightSavingTime(&isDST);

 wprintf(L"DST six months from now? %ls\n", isDST ? L"Yes" : L"No");

 return 0;
}

The raw C++ code is a straightforward translation of the corresponding C++/CX code. One

thing to note is that we used the symbol Runtime ‐

Class_Windows_Globalization_Calendar rather than hard-coding the string

L"Windows.Globalization.Calendar" .

Another thing to note is that Windows Runtime strings are handled in the form of

HSTRING s, which we discussed a little while ago.

¹Another approach is Modern C++, which is effectively a projection of the Windows Runtime

into native C++.

https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20160615-00/?p=93675
http://moderncpp.com/

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

