
1/4

July 1, 2016

How exactly are page tables allocated on demand for
large reserved regions?

devblogs.microsoft.com/oldnewthing/20160701-00

Raymond Chen

Commenter pm100 asked to go into more detail into why reserving a large amount of address

space used to be expensive, and now it’s not.

I sort of answered it in my reply, but let’s draw some pictures.

Recall that the paging structure is hierarchical. To describe a page of memory, you first select

a page directory pointer from the page directory pointer table (PDPT). That points to a page

directory (PD). You then select a then a page directory entry (PDE) from the page directory.

This points to a page table (PT). You then select a page table entry (PTE) from the page table.

The page table entry tells you where the memory for the page can be found.

PDPT

PDP PD

PDP ● → PDE

PDP PDE PT

PDP PDE ● → PTE

PDE PTE

⋮ PTE Physical memory

PTE ● → Page N: 00 01 02 03 04 05 …

PTE

⋮

For pages that are reserved, the page table entry doesn’t point to physical memory. Instead, it

has a sad-face that says “If you try to access this memory, you will get a page fault.”

https://devblogs.microsoft.com/oldnewthing/20160701-00/?p=93785
https://blogs.msdn.microsoft.com/oldnewthing/20160318-00/?p=93181#comment-1230851


2/4

PDPT

PDP PD

PDP ● → PDE

PDP PDE PT

PDP PDE ● →

PDE PTE

⋮ Physical memory

PTE ● → Page N: 00 01 02 03 04 05 …

PTE

⋮

The above diagram shows a page table with some pages reserved (the sad faces), and some

pages committed and present (the ones with a filled-in PTE).

If you reserved a huge chunk of address space, the traditional way of representing this was a

page table full of sad-faces.

PDPT

PDP PD

PDP ● → PDE

PDP PDE PT

PDP PDE ● →

PDE

⋮

⋮

But starting in Windows 8.1 and Windows Server 2012 R2, the memory manager optimizes

this out, and instead of creating an entire page table filled with sad faces, it puts a sad face in

the page directory:



3/4

PDPT

PDP PD

PDP ● → PDE

PDP PDE

PDP ●

PDE

⋮

If you try to access memory through a sad-face page directory entry, the CPU raises a page

fault.

Looking back at the original issue: The customer was reserving 100GB of address space. Each

page table maps 512 × 4KB = 2MB of address space, so that’s 51,200 page tables filled with

sad faces. The memory manager optimizes this out and instead of creating 51,200 page tables

filled with sad faces, it creates 51,200 page directory entries with sad faces.

But wait, that’s still proportional to the size of the memory reserve, albeit with a much lower

constant factor. How do we get the memory usage to be constant?

Page directory entries are grouped together into page directories. Each page directory holds

512 page directory entries, and if the page directory is filled with sad faces, we can replace it

with a sad face in the page directory pointer table. Our 51,200 sad-face page directory entries

become 100 sad-face page directory pointer. (On x64, there’s another hierarchy level above

the page directory pointer table, known as the page map level 4, but let’s ignore that for now.)

A reservation of 100GB of address space turns into this:

PDPT

PDP

⋮

PDP

PDP

https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933


4/4

⋮

Okay, so the constant factor is now a lot lower. And if you filled the entire page directory page

table with sad faces, then it can be replaced by a single sad face in the page map level 4.

So now we have an extremely low constant factor, but it’s still a constant factor. How do you

get the whole thing to be a constant?

Because eventually you will hit the top of the virtual memory hierarchy (currently page map

level 4), and the madness stops.

If you think about it another way, you would have realized that reserving address space

would never have required creating page tables, page directories, or page directory pointer

tables in the first place: The address space was already invalid (namely, in the free state).

Reserving address space doesn’t make the pages valid; they’re just invalid for a different

reason (namely, in the reserved state). They were sad faces before, and they remain sad faces.

Either way, they’re still sad. You didn’t have to do anything with the page tables to change

sad faces to sad faces.

There is therefore no additional cost in terms of page tables, page directories, or page

directory pointer tables. The cost is in the memory manager’s internal bookkeeping, which is

constant.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

