
1/3

September 2, 2016

A customer question about shortcuts that don’t have a
target path

devblogs.microsoft.com/oldnewthing/20160902-00

Raymond Chen

A customer had a question about the Minesweeper shortcut on Windows 7:

We found something strange when we tried to retrieve target path information from the
Minesweeper shortcut, specifically, the system built-in shortcut for Minesweeper application
which is normally found in C:\ProgramData\Microsoft\Windows\Start
Menu\Programs\Games\Minesweeper.lnk . When we tried to view the property of this
shortcut file, we got the information below:

Target type: Minesweeper

Target location: Games

Target: Minesweeper

On the other hand, if we manually create a shortcut to Minesweeper, the shortcut properties say

Target type: Application

Target
location:

Minesweeper

Target: “C:\Program Files\Microsoft
Games\Minesweeper\Minesweeper.exe”

We are unable to obtain the target path from the system built-in shortcut, but we can get it from
the one we created manually.

Can you explain the difference between the two shortcuts? How can we get the target path from
both types of shortcuts?

https://devblogs.microsoft.com/oldnewthing/20160902-00/?p=94235

2/3

As we saw some time ago, a shortcut can point to anything in the shell namespace, and the

target path is meaningful only for shortcuts whose targets are, y’know, paths. if the target of

the shortcut is not a file system object, then you can’t get a path to it because those virtual

objects don’t have paths.

But it wasn’t clear why the customer is trying to take these shortcuts apart. I asked, “Why is

the customer obtaining the target path? Is this for some sort of software inventory tool?”

The customer liaison explained:

This is an issue raised by my customer. The customer is retrieving the target path of a shortcut
by using IShell Link::Get Path() , but they are unable to get the target path information
from some shortcuts, of which Minesweeper.lnk is just an example. The customer wants to
retrieve the path information for arbitrary shortcuts including those which point to third-party
applications. I don’t understand how the underlying mechanism works, so I don’t know whether
there is a workaround that would allow the customer to retrieve the path information from
shortcuts like Minesweeper.lnk . Is there some other way to retrieve the target path
information?

The customer liaison gave a long response that didn’t actually answer the question.

With some prodding, we got an answer from the custom liaison: The customer is a laptop

manufacturer, and their laptop keyboard has some dedicated function keys. They are writing

software that lets the user assign shortcuts to those function keys, so that when the user

presses the function key, the corresponding app launches. They want to get the target path of

the shortcut so they know what program to launch.

Y’know, if all you want to do is launch the thing that a shortcut refers to, you can just launch

the shortcut.

ShellExecute(hwnd, nullptr, "Minesweeper.lnk",
 nullptr, nullptr, SW_SHOWNORMAL);

This has the advantage of also respecting the command line arguments, the current directory,

the hotkey, any application compatibility settings, console settings (if the target is a console

application), and all the other information stored in the shortcut. It also means that if the

target of the shortcut gets moved or renamed, the standard shortcut resolution code will kick

in and try to find the target, wherever it ended up.

This is like designing an overhead console in an automobile for a garage door opener. One

way to do it is to have the user bring the garage door opener to the car, and press a button

that causes the car to take apart the garage door opener and analyze it to figure out the

transmission frequency, extract the rolling code, and whatever other information you need in

order to perfectly replicate the operation of the garage door opener.

https://blogs.msdn.microsoft.com/oldnewthing/20121210-00/?p=5883

3/3

Or you could design the overhead console so it had a compartment where the user can place

the garage door opener, and when they want to open the garage door, they push the button.

The customer liaison replied that the customer accepted the workaround of calling Shell ‐

Execute and it is working fine.

I didn’t bother pointing out that calling Shell Execute isn’t the workaround. It’s actually

the standard technique. The thing about extracting the target path and manually executing

the program: That is the thing that smells like a workaround.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

