
1/3

September 22, 2016

Dither me this
devblogs.microsoft.com/oldnewthing/20160922-00

Raymond Chen

For some reason, the Internet got all excited about dithering a few months ago, linking

primarily to this article about eleven dithering algorithms. (Here’s another article about

dithering.)

Which reminded me of a dithering story.

The folks at Microsoft Research, when not working on their time machine, occasionally

produce code for product teams. Some time ago, the Internet Explorer team received some

code from Research that implemented an improved dithering algorithm.

One of my colleagues reviewed the code, and noticed that, among other things, the algorithm

rejected the convention wisdom mentioned in Tanner Helland’s article:

Typically, when we finish processing a line of the image, we discard the error value we’ve been
tracking and start over again at an error of “0” with the next line of the image.

Rather than throwing away the accumulated error, the algorithm distributed the error in the

final pixel into the next scan row, so that the error from the last pixel in the row wouldn’t be

lost.¹ It also had a separate algorithm for the last row of the bitmap, pushing all the error to

the right since there is no row below.

I have no idea what it did with the error from the final pixel. Maybe it uploaded it to a server

where all the lost errors are archived.

My colleague asked why the algorithm was so meticulous about not throwing away

accumulated error, at a cost of significant algorithmic complexity. The developer explained,

“Because it’s correct. We want to minimize the error, and if you throw it away at the end of

the row, then you never get to compensate for it in the next row. The total error in the image

is higher as a result.”

This is a case of getting so engrossed by the mathematical perfection of your algorithm that

you lose sight of the original problem.

https://devblogs.microsoft.com/oldnewthing/20160922-00/?p=94365
https://www.reddit.com/r/programming/comments/4nksc9/image_dithering_eleven_algorithms_and_source_code/
https://news.ycombinator.com/item?id=11886318
http://www.tannerhelland.com/4660/dithering-eleven-algorithms-source-code/
http://www.crisluengo.net/index.php/archives/355
http://www.tannerhelland.com/4660/dithering-eleven-algorithms-source-code/


2/3

The goal of dithering is to improve the appearance of an image when it is quantized, that is,

when it is displayed with a lower color resolution than the original image. The principle

behind Floyd-Steinberg dithering is to keep track of how far your quantized color is from the

ideal color and to distribute that error into future nearby pixels, in order to give those pixels a

chance to compensate for the quantization error.

But minimizing error is not the goal of dithering. It is merely a technique. The goal of

dithering is to make an image that looks good.

My colleague asked, “What if the image is clipped due to layout, or because the user scrolls

the page so that the image is only half-visible. Do you go back and re-dither the visible

portion of the image?”

The developer admitted that the image is dithered only once. If the image is clipped, the

clipping is applied to the dithered version.

“Well, then, when the image gets clipped, what happens to all the error in the clipped-out

portion? Oh, wait, I’ll tell you: It’s thrown away.”

As an extreme case of this, consider dragging another window so it partially covers the

dithered image. Does the image re-dither to account for the fact that some of its error is now

covered by another window? No, the dithered image is just the dithered image, and it gets

clipped and occluded just like any other image.

So there’s really no point in being so anal-retentive about the error in the last column and

last row of the image. First of all, it creates a discontinuity in the algorithm, so that the last

column and last row of the image get dithered differently from the other pixels, which may

result in a “band” at the edge if there is a large area of uniform color.

Besides, that error can get lost to occlusion or clipping. And don’t try to “repair” the image

when that happens. Not only is it computationally expensive, but it would result in the

somewhat disturbing effect that moving a window over the image results in the image

developing a constantly changing “fringe” as the last visible row and column of the image

constantly recalculates.

Getting rid of the special cases for the last row and column simplified the algorithm. What’s

more, in the era where CPUs had limited on-chip cache (measured in single-digit kilobytes),

it meant that the code and look-ahead row could fit into cache, leaving all the memory

bandwidth available for accessing the actual bitmap.

This was a soft real-time algorithm, because the user is waiting for the image to appear on the

screen, so improvements in speed were far more valuable than barely perceptible

improvements in visual quality.



3/3

¹ I forget how large the error diffusion matrix was exactly. Didn’t realize there was going to

be a quiz over 20 years later. Let’s assume it was the classic Floyd-Steinberg dither, which

pushes error only one pixel out. (Although I seem to recall it had a larger diffusion matrix,

because there was some odd/even weirdness.)

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

