
1/2

September 28, 2016

When can you free the memory backing the HSTRING
you created with WindowsCreateStringReference?

devblogs.microsoft.com/oldnewthing/20160928-00

Raymond Chen

A little while back, I posted my complete guide to HSTRING semantics (a rip-off of Eric’s

complete guide to BSTR semantics). A discussion of security descriptor lifetime somehow

triggered the question “When can you free the memory backing the HSTRING you created with

Windows Create String Reference?”

You can free the memory backing the HSTRING after you destroy the HSTRING , and since

this is a fast-pass string, you destroy the HSTRING by simply abandoning it. Therefore, you

can free the memory when you know that nobody should have a copy of the fast-pass

HSTRING handle any more.

(For the purpose of terminology, I’m going to say that you have a “copy” of an HSTRING

handle if you merely copied the HSTRING handle. E.g., HSTRING copy = hstr; On the

other hand, I’m going to say that you have a “duplicate” of an HSTRING if you passed it to

Windows Duplicate String .)

Okay, so how do you know that nobody has a copy of the fast-pass HSTRING handle any

more?

Recall the rules for HSTRING s: If a function is passed an HSTRING and it wants to save the

HSTRING for future use, it must use Windows Duplicate String to increment the reference

count on the string (and possibly convert it from fast-pass to standard). Therefore, if you pass

the HSTRING to another function, you know that there are no copies of that HSTRING

handle when the function returns, because creating a copy is not allowed. The only place

where a literal copy of the HSTRING handle is allowed is in the function that created it, and

therefore you know when there are no more copies of the HSTRING handle because all of the

copies belong to you.

The question sort of acknowledges this rule, but notes, “All it takes is one bug somewhere in

all of WinRT where someone forgets to duplicate a input string if they need said string later

after the function has returned.”

https://devblogs.microsoft.com/oldnewthing/20160928-00/?p=94405
https://blogs.msdn.microsoft.com/oldnewthing/20160615-00/?p=93675
https://blogs.msdn.microsoft.com/ericlippert/2003/09/12/erics-complete-guide-to-bstr-semantics/
https://devblogs.microsoft.com/oldnewthing/#comment-1249765

2/2

That’s true. But it’s true of C-style string pointers, too! If you pass a C-style string to another

function, and that other function wants to retain the string, it’s going to need to call strdup

or some other string duplication function so it can have its own private copy of the string.

The value received as a function parameter is not valid once the function returns; if you need

to use it after the function returns, you need to duplicate the string.

Similarly, if you receive a COM interface pointer, and you want to continue using it after the

function returns, you need to call IUnknown::AddRef to increase the reference count on the

interface, corresponding to the copy of the pointer you retained. When you’re done with the

pointer, you call IUnknown::Release .

In both of these cases, you are relying on people writing code to respect these rules. All it

takes is one bug somewhere in all of C where someone forgets to duplicate a input string if

they need said string later after the function has returned.

Somehow, we’ve managed to survive working with C-style strings and with COM interface

pointers with these rules. Maybe it’s with the help of things like smart pointers, or maybe it’s

just through good discipline. Whatever the reason, keep up the good work.

Bonus chatter: One of the rules for fast-pass strings is that you cannot change the contents

of the string as long as the HSTRING is still in use. One commenter interpreted this to mean

that string references aren’t thread-safe. Not true. Rather, the statement is a direct reflection

of the fact that an HSTRING is immutable. If you changed the contents of the buffer that

backs the HSTRING , then you break the immutability rule. Thread safety is not at issue here.

You can use a fast-pass string from any thread you like, as long as you stop using it before

your function returns. (This means that your function cannot return until the other thread

has definitely finished with the fast-pass string. In practice, this is not commonly done;

instead, the function uses Windows Duplicate String to create a standard HSTRING and

passes that HSTRING to the other thread, which can then Windows Delete String the

HSTRING when it is done.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

