
1/1

October 14, 2016

How can I force memory to be allocated above the 4GB
boundary (for debugging purposes) on Windows 7?

devblogs.microsoft.com/oldnewthing/20161014-00

Raymond Chen

A customer discovered that their program has 64-bit-to-32-bit pointer truncation bugs. They

are working hard to track down all the places where this happens. On Windows 8 and higher,

they can build their program with high entropy VA to make ASLR be super-aggressive about

putting heap and stack memory above the 4GB boundary. However, they still have some

customers running Windows 7, and on Windows 7, even though ASLR randomizes the

location of the heap and stack, it does not push them above the 4GB mark.

The customer asked for suggestions on what steps they can take to help flush out their

pointer truncation bugs on Windows 7 machines.

Unfortunately, there’s no easy solution for Windows 7. You can set the system Allocation ‐

Preference to MEM_TOP_DOWN . This requires a reboot, and the setting applies to the entire

system (not a single process), and it makes memory allocation slower, so this approach is

suitable only for testing purposes.

The customer wanted to force the heap and stack above 4GB on production machines, so the

above approach is not recommended. We saw in the earlier discussion that there exists a

poor-man’s solution: Reserve all the available memory below the 4GB mark. That will push

new allocations above the 4GB mark. The initial stack and initial heap segment will still be

below 4GB, and future allocations in the process will be slower because it increases the

amount of address space under management. (Searching for an open address takes longer.)

The exact impact will vary depending on the application’s memory allocation patterns, so you

will want to measure the performance before and after to see if the degradation is acceptable.

But it’s better than nothing,

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20161014-00/?p=94515
https://blogs.technet.microsoft.com/srd/2013/12/11/software-defense-mitigating-common-exploitation-techniques/
https://msdn.microsoft.com/en-us/library/bb430720.aspx
https://blogs.msdn.microsoft.com/oldnewthing/20150709-00/?p=45181
https://blogs.msdn.microsoft.com/oldnewthing/20150709-00/?p=45181
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

