
1/2

November 18, 2016

Why does calling SetForegroundWindow immediately
followed by GetForegroundWindow not return the same
window back?

devblogs.microsoft.com/oldnewthing/20161118-00

Raymond Chen

A customer said that their program used Find Window to find a window in the system, then

called Set Foreground Window to set that window to the foreground. The call succeeds, but if

they enumerate the windows to check the z-order, the window that they set as foreground is

not at the top of the z-order. And if they call Get Foreground Window , they don’t get that

window back.

So what does it mean when Set Foreground Window succeeds, but doesn’t actually set the

foreground window?

The Set Foreground Window function actually does two things, one immediately and one

asynchronously.

It immediately sets the input queue associated with the window as being the foreground

input queue. Among other thing, it means that keyboard input will be directed to that input

queue. It also means that threads belonging to that input queue now have permission to call

Set Foreground Window , which is why many people affectionately call this having the

foreground love.

The function also notifies the window, “Hey, you should make yourself the active window for

your queue.” This notification is processed synchronously if the target window’s thread

belongs to the same input queue as the thread that is calling Set Foreground Window , and it

is processed asynchronously if the window belongs to a different thread group. This

notification is done by roughly the same internal nudging mechanism that threads sharing an

input queue use to coordinate access to input. In particular, it means that the thread

responsible for the target window needs to process messages in order to receive the nudge.

The fact that the “Go make yourself the active window for your queue” portion is

asynchronous (in the cross-thread-group case) means that at the moment that Set ‐

Foreground Window returns, the window is becoming the foreground window, but it is not

https://devblogs.microsoft.com/oldnewthing/20161118-00/?p=94745
https://blogs.msdn.microsoft.com/oldnewthing/20090220-00/?p=19083
https://blogs.msdn.microsoft.com/oldnewthing/20130606-00/?p=4153

2/2

necessarily the foreground window yet. If you check the z-order or call Get Foreground ‐

Window , you are likely to see that the target window hasn’t activated yet.

Let’s assume that the customer’s program is doing this sort of Find Window trickery as part

of test automation. And let’s suppose that they want the automation to wait until the target

window has arrived to the foreground, so that it can continue the next step in the

automation.

A bad solution would be to use the Attach Thread Input function to connect the test

automation tool’s input queue to the input queue of the target window. This is a bad solution

because it means that if the target window has stopped responding, then the test automation

will also stop responding. And it’s bad for a test to stop responding. The purpose of the test is

to monitor the main application reliably, not to get into the same jail. (Or to use a different

earlier analogy, to create a joint bank account with an unreliable chap.)

What the test could do is something like this:

 SetForegroundWindow(hwndTarget);

 // Wait up to 5 seconds for the window to process the
 // foreground notification.
 DWORD_PTR result; // unused
 if (!SendMessageTimeout(hwndTarget, WM_NULL,
 0, 0, 0, 5000, &result)) {
 // Window was unresponsive for 5 seconds, or the
 // window was destroyed, or some other bad thing.
 ReportFailedTest();
 }

 if (GetForegroundWindow() != hwndTarget) {
 // The window did not become foreground for some reason.
 // Maybe there was some interference from elsewhere in the
 // system.
 ReportFailedTest();
 }

Here we take advantage of the WM_NULL message. This message does nothing, so sending it

has no practical effect, but the fact that we sent a message means that our code waits for the

window to finish processing the previous message, which was “Hey, you should make

yourself the active window for your queue.” And that’s what we are really waiting for.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20130619-00/?p=4043
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

