
1/3

December 1, 2016

What is __wchar_t (with the leading double underscores)
and why am I getting errors about it?

devblogs.microsoft.com/oldnewthing/20161201-00

Raymond Chen

The Microsoft Visual C++ compiler has a compiler option called /Zc:wchar_t which lets

you control what the symbol wchar_t means.

According to the C++ standard, wchar_t is a distinct native type, and that’s what the Visual

C++ compiler defaults to. However, you can set /Zc:wchar_t- , and that suppresses the

intrinsic definition of wchar_t , allowing you to define it to whatever you like. And for

Windows, this historically means

typedef unsigned short wchar_t;

because Windows predates the versions of the C and C++ standards that introduced

wchar_t as a native type.

So now you have a problem if you are writing a library that will be consumed both by old-

school code written with wchar_t defined as an alias for unsigned short and by new-

school code written with wchar_t as an intrinsic type. What data type do you use for your

string parameters?

Well, if your library uses C linkage, then you’re in luck. Since the intrinsic wchar_t is a 16-

bit unsigned integer in Visual C++, it is binary-compatible with unsigned short , so you

can declare your function as accepting wchar_t in the header file, and each client will

interpret it through their own wchar_t -colored glasses: Code that is wearing the

/Zc:wchar_t glasses will see the native wchar_t Type. Code that is wearing the

/Zc:wchar_t- glasses will see an unsigned short . And since C linkage is not decorated,

you can export one function that accepts a wchar_t , and it will interoperate with either

definition.

That works for undecorated functions, but what about languages like C++ that use decoration

to encode the types of the parameters? Which decoration do you use?

Let’s do both.

https://devblogs.microsoft.com/oldnewthing/20161201-00/?p=94836
http://dilbert.com/strip/1996-01-27

2/3

What you do is write two versions of your function, one that takes an unsigned short and

one that takes a __wchar_t . That double-underscore version represents “The native type

for wchar_t that is used by /Zc:wchar_t .”

In other words, /Zc:wchar_t results in the compiler internally doing the equivalent of

typedef __wchar_t wchar_t;

It makes the symbol wchar_t an alias for the internal __wchar_t type.

So let’s say you have a function called DoSomething that takes a wide string, and you want

to accept clients compiled with either setting for /Zc:wchar_t .

// Something.h

bool DoSomething(const __wchar_t* s);
bool DoSomething(const unsigned short* s);

This declares two versions of the function. The first will be matched by code compiled with

/Zc:wchar_t . The second will be matched by code compiled with /Zc:wchar_t- .

Your implementation goes like this:

// Something.cpp
#include <Something.h>

bool DoSomethingWorker(const wchar_t* s)
{
... implementation ...
}

bool DoSomething(const __wchar_t* s)
{
 return DoSomethingWorker(reinterpret_cast<const wchar_t*>(s));
}

bool DoSomething(const unsigned short* s)
{
 return DoSomethingWorker(reinterpret_cast<const wchar_t*>(s));
}

As noted earlier, callers who compile with /Zc:wchar_t will match the first version of Do ‐

Something ; callers who compile with /Zc:wchar_t- will match the second. But both of

them funnel into a common implementation, which we declare with wchar_t , so that it

matches the /Zc:wchar_t setting used by the library itself.

Okay, so to answer the opening question: __wchar_t is the name for the intrinsic data type

for wide strings. If you compile with /Zc:wchar_t , then that’s the data type that wchar_t

maps to. The funny name exists so that code compiled with /Zc:wchar_t- can access it too,

3/3

and so that code which wants to be /Zc:wchar_t -agnostic can explicitly refer to the

internal native type.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

