
1/2

December 7, 2016

Why don’t I get a broken pipe when the child process
terminates?

devblogs.microsoft.com/oldnewthing/20161207-00

Raymond Chen

A customer was having a problem with named pipes.

Our main process creates a named pipe with ACCESS_INBOUND and passes the write handle to
the child process. The main process keeps reading from the pipe until it gets
ERROR_PIPE_BROKEN . We expect that when the child process terminates, the main process

will get the ERROR_PIPE_BROKEN error. However, we are finding that sometimes the main
proecss doesn’t get the ERROR_PIPE_BROKEN error, even though the child process has
definitely terminated. Are there cases where the process with the write end of the pipe
terminates, but the read doesn’t error out with ERROR_PIPE_BROKEN ?

You won’t get ERROR_PIPE_BROKEN until all the write handles are closed. One common

reason why you don’t get the error is that there’s still a write handle open in the parent

process. Another possibility is that the child process launched a subprocess which inherited

the write handle, or more generally, the handle got duplicated into another process by some

means.

The customer wrote back.

Thanks. That is indeed the issue. The main process spawns many child processes
simultaneously, so depending on race conditions, the write handle for one pipe could
inadvertently be inherited by an unrelated child process. We could explicitly serialize our
Create Process calls, but is there another way to specify that a child process should inherit

only certain handles and not others?

Yes. You can use the PROC_THREAD_ATTRIBUTE_LIST structure to exercise finer control over

which handles are inherited.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20161207-00/?p=94875
https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20111216-00/?p=8873
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

