
1/3

December 12, 2016

Why does tapping the Alt key cause my owner-draw
static control to repaint?

devblogs.microsoft.com/oldnewthing/20161212-00

Raymond Chen

A customer had an owner-drawn static control, and they found that when the user pressed

the Alt  key, their static control redrew. This extra redraw was unwanted, presumably

because the control takes a long time to draw, and they didn’t want to waste the time

redrawing something that hadn’t changed.

So why does tapping the Alt  key cause the owner-draw static control to repaint?

Because the state of the keyboard accelerators has changed.

The customer noticed that on the initial draw, the itemState  had the numeric value of 260,

whereas the itemState  is 4 on the unwanted redraw. The customer noted that 4 is

documented as ODS_DISABLED , but 260 is not documented.

Okay, well, let’s note that the value 260 is documented. It breaks down as 4 | 256  which is

ODS_DISABLED | ODS_NO ACCEL .

Let’s walk through what’s going on here.

When the static control first paints, the window that contains it is in the “hidden

accelerators” state, so the draw flags are ODS_DISABLED | ODS_NO ACCEL . The

ODS_DISABLED  is a bug, as we saw some time ago. The ODS_NO ACCEL  is telling you to do

your owner-draw thing, but don’t draw any accelerators.

When the user presses the Alt  key, the window changes state to “visible accelerators”, so

the static control asks you to draw once more, with accelerators, as I discussed some time

ago.

Okay, now that we know what’s going on, what can we do to stop it?

Once you understand the way the WM_UPDATE UI STATE and WM_CHANGE UI STATE messages

interact, you can see two ways out.

https://devblogs.microsoft.com/oldnewthing/20161212-00/?p=94915
https://blogs.msdn.microsoft.com/oldnewthing/20141211-00/?p=43423
http://www.imdb.com/title/tt0054141/
https://blogs.msdn.microsoft.com/oldnewthing/20050503-00/?p=35723
https://devblogs.microsoft.com/oldnewthing/?p=4343


2/3

One is to ignore the request to draw the control if it is happening in response to a

WM_UPDATE UI STATE  message.

LRESULT CALLBACK StaticSubclassProc( 
   HWND hwnd, UINT wm, WPARAM wParam, LPARAM lParam, 
   UINT_PTR id, DWORD_PTR refData) 
{ 
   LRESULT lres; 
   ParentClass *parentClass = (ParentClass*)refData; 
   switch (wm) 
   { 
   case WM_UPDATEUISTATE: 
       parentClass->ignoreOwnerDraw = true; 
       lres = DefSubclassProc(hwnd, wm, wParam, lParam); 
       parentClass->ignoreOwnerDraw = false; 
       return lres; 
   } 
   return DefSubclassProc(hwnd, wm, wParam, lParam); 
} 

class ParentClass 
{ 
... 
void OnDrawItem(const DRAWITEMSTRUCT* pdis) 
{
 if (pdis->CtlID == IDC_MYSTATIC && !ignoreOwnerDraw) { 
  DoSlowOwnerDraw(...); 
 } 
}

bool ignoreOwnerDraw = false; 
} 

The idea here is to set a flag if a WM_UPDATE UI STATE  is in progress, and if the handling of

the WM_UPDATE UI STATE  message results in a request to redraw the control, then ignore it.

I leave as an exercise the code to install and remove the subclass procedure. I do this partly as

an actual exercise, and partly to avoid me having to write two versions of the answer,

depending on whether the parent is a regular window or a dialog box.

Update: As Adrian notes below, this algorithm fails if the static control chooses merely to

invalidate in response to WM_UPDATE STATE  rather than repaint. By the time the WM_PAINT

arrives, the flag would already be reset. Fortunately… read on.

Another solution is to prevent the static control from seeing the WM_UPDATE UI STATE

message at all.

https://blogs.msdn.microsoft.com/oldnewthing/20031111-00/?p=41883
https://devblogs.microsoft.com/oldnewthing/#comment-1276675


3/3

LRESULT CALLBACK IgnoreUIStateChangeSubclassProc( 
   HWND hwnd, UINT wm, WPARAM wParam, LPARAM lParam, 
   UINT_PTR id, DWORD_PTR /* refData */) 
{ 
   switch (wm) { 
   case WM_UPDATEUISTATE: 
       return DefWindowProc(hwnd, wm, wParam, lParam); 
   case WM_NCDESTROY: 
       RemoveWindowSubclass(hwnd, IgnoreUIStateChangeSubclassProc, 0); 
       break; 
   } 
   return DefSubclassProc(hwnd, wm, wParam, lParam); 
} 

BOOL IgnoreUIStateChange(HWND hwnd) 
{ 
return SetWindowSubclass(hwnd, IgnoreUIStateChangeSubclassProc, 
                         1, 0); 
} 

I made this subclass procedure self-unregistering because it has no reference to any other

objects, so there are no lifetime issues with letting the subclass procedure outlive the parent

class. This makes the function self-contained and consequently generally useful. The

Ignore UI State Change  function registers the subclass procedure on any control, at which

point the control will ignore any changes to show or hide accelerators or focus rectangles.

The subclass procedure works by intercepting the WM_UPDATE UI STATE  message and sending

it directly to Def Window Proc  for default processing, bypassing any custom processing in the

control itself. Passing the message to Def Window Proc  allows the normal message

propagation to continue, but bypassing the control’s window procedure means that the

control is never told that the UI state has changed, which means that it never tries to redraw

itself to hide or show accelerators or focus rectangles.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

