
1/3

December 21, 2016

What is the maximum numeric value for a socket, and
what is the maximum number of sockets a Windows
program can create?

devblogs.microsoft.com/oldnewthing/20161221-00

Raymond Chen

A customer had a problem with their application that used network sockets, and they wanted

to know what the maximum numeric value for a socket is. “The program uses a signed

integer to hold the socket descriptor, and we found in our testing that the numeric value of

INVALID_SOCKET is 0xFFFFFFFF . What is the maximum value?”

In addition to being a vague question, it’s also a strange question, so we asked for more

information about the problem they are having, in the hopes that we could both understand

how the problem led them to asking the strange question, and so we could try to solve the

problem.

The customer explained that they have a multithreaded application that uses thousands of

network sockets. After running for several days, the customer observed that socket

operations are failing with INVALID_SOCKET , and WSA Get Last Error returns error 10038:

WSA E NOT SOCK . Since the error is intermittent, the customer is under the impression that the

application may have created so many sockets that their socket numbers have exceeded the

maximum legal numeric value for a socket, resulting in the INVALID_SOCKET error.

The customer added, “According to this link, the maximum number of sockets that a

program can use is determined at compile time by the manifest constant FD_SET SIZE .

However, we cannot find where this constant is defined.”

Okay, it’s not clear where the customer is getting the impression that a single program cannot

use more than FD_SET SIZE sockets. Indeed, the documentation they referenced says quite

the opposite:

The maximum number of sockets that a Windows Sockets application can use is not affected by
the manifest constant FD_SETSIZE.

(Emphasis mine.)

https://devblogs.microsoft.com/oldnewthing/20161221-00/?p=94985
https://msdn.microsoft.com/en-us/library/ms739169(v=vs.85).aspx

2/3

The documentation continues:

This value defined in the Winsock2.h header file is used in constructing the FD_SET structures
used with select function. The default value in Winsock2.h is 64.

Which conveniently answers the customer’s third question.

What the FD_SET SIZE constant determines is the maximum number of sockets that can be

passed in a single call to the select function. The total number of sockets available to a

program is not limited by FD_SET SIZE .

And as the documentation notes, you can make FD_SET SIZE bigger if you need to. The

point is that the fd_set structure is a variable-sized structure, but for compatibility with

Unix programs, it is formally defined as a fixed-size structure so that programs can pass them

around.

Okay, now back to the original question: Is it possible that the socket function is returning

socket numbers that are not legal, and that’s why the program gets INVALID_SOCKET when

it tries to perform socket operations on those sockets?

This is another case of starting with the assumption that you found an operating system bug

instead of starting with the assumption that you have a bug in your program.

While it’s possible that there is a bug in the operating system code that does socket

management that causes it to hand out invalid socket handles, a much more likely reason

that your program is being told that it is using invalid socket handles is, um, because it is

using invalid socket handles.

Verify that the handle being passed really is a valid socket. Maybe it was closed prematurely

elsewhere. Maybe there is a bug in some other part of the code that is double-closing a handle

(and the second time it closes, it accidentally closed your socket handle). Or maybe there is a

bug in some other part of the code that is closing an uninitialized handle variable, so it’s

basically rolling the dice, and most of the time it gets ERROR_INVALID_HANDLE , but once in

a while, the uninitialized handle variable happens to contain a value that numerically

matches one of your socket handles, and it ended up accidentally closing your socket.

If you really believe that the socket function is returning invalid sockets, I guess you can

add debugging code that takes the return value of every call to socket and (if it is not

INVALID_SOCKET indicating that the system could not create a socket) call getsockopt to

read an arbitrary-selected socket option, and see whether it fails with WSA E NOT SOCK .

I bet it won’t. The socket handle was probably good at the point the system gave it to you. You

probably did something to make it go bad. Application Verifier can help you find out what.

Raymond Chen

https://msdn.microsoft.com/en-us/library/ms737873(v=vs.85).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

