
1/2

December 29, 2016

The evolution of the text size limits related to the
standard static control

devblogs.microsoft.com/oldnewthing/20161229-00

Raymond Chen

Michael Quinlan wondered about the text size limits related to the standard static control.¹

We start with the resource format, since that was the limiting factor in the original problem.

The original 16-bit resource format represented strings as null-terminated sequences of

bytes, so in theory they could have been arbitrarily large. However, 16-bit string resources

were limited to 255 characters because they used a byte count for string length. My guess is

that the resource compiled took this as a cue that nobody would need strings longer than 255

characters, so it avoided the complexity of having to deal with a dynamic string buffer, and

when it needed to parse a string in the resource file, it did so into a fixed-size 256-byte buffer.

I happen to still have a copy of the original 16-bit resource compiler, so I can actually verify

my theory. Here’s what I found:

There was a “read next token” function that placed the result into a global variable. Parsing

was done by asking to read the next token (making it the current token), and then and then

studying the current token. If the token was a string, the characters of the string went into a

buffer of size MAXSTR + 1 . And since string resources have a maximum length of 255,

MAXSTR was 255.

Although the limit of 255 characters did not apply to dialog controls, the common string

parser stopped at 255 characters. In theory, the common string parser could have used

dynamic memory allocation to accommodate the actual string length, but remember that

we’re 16-bit code here. Machines had 256KB of memory, and no memory block could exceed

64KB. Code in this era did relatively little dynamic memory allocation; static memory

allocation was the norm. It’s like everybody was working on an embedded system.

Anyway, that’s where the 255-character limit for strings in resource files comes from. But

that’s not a limit of the resource file format or of static text controls. It’s just a limit of the

resource compiler. You can write your own resource compiler that generates long strings if

you like.

https://devblogs.microsoft.com/oldnewthing/20161229-00/?p=95045
https://blogs.msdn.microsoft.com/oldnewthing/20161103-00/?p=94635#comment-1272195
https://blogs.msdn.microsoft.com/oldnewthing/20040618-00/?p=38803
https://blogs.msdn.microsoft.com/oldnewthing/20040130-00/?p=40813

2/2

Okay, so what about the static text control? The original 16-bit static text control had a text

size limit of 64KB because 16-bit. This limit carried forward to Windows 95 because the static

text control in Windows 95 was basically a 16-bit control with some 32-bit smarts.

On the other hand, Windows NT’s standard controls were 32-bit all the way through (and

also Unicode). The limits consequently went up from 64KB to 4GB. Some messages needed

to be revised in order to be able to express strings longer than 64KB, For example, the old

EM_GET SEL message returned the start and end positions of the selection as two 16-bit

integers packed into a single 32-bit value. This wouldn’t work for strings longer than 65535

characters, so the message was redesigned so that the wParam and lParam are pointers to

32-bit integers that receive the start and end of the selection.

Anyway, now that the 16-bit world is far behind us, we don’t need to worry about the 64KB

limit for static and edit controls. The controls can now take all the text you give it.²

¹ And then for some reason Erkin Alp Güney said that I’m “employed as a PR guy.” I found

this statement very strange, because not only am I not employed as a PR guy, I have basically

no contact with PR at all. The only contact I do have is that occasionally they will send me a

message saying that they are upset at something I wrote. I remember that they were very

upset about my story that shared some trivia about the //build 2011 conference because it

(horrors) talked about some things that went wrong. (And as Tom West noted, it wouldn’t

seem to be a good idea for PR to employ someone with the social skills of a thermonuclear

device.)

² Well, technically no. If you give a string longer than 4GB, then it won’t be able to handle

that. So more accurately, it can handle all the text you would give it, provided you’re not

doing something ridiculous. I mean, you really wouldn’t want to manipulate 4GB of data in

the form of one giant string. And no human being would be able to read it all anyway.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20161103-00/?p=94635#comment-1272265
https://blogs.msdn.microsoft.com/oldnewthing/20130401-00/?p=4793
https://blogs.msdn.microsoft.com/oldnewthing/20161103-00/?p=94635#comment-1272435
https://blogs.msdn.microsoft.com/oldnewthing/tag/the-social-skills-of-a-thermonuclear-device
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

