
1/3

January 11, 2017

Applying a permutation to a vector, part 6
devblogs.microsoft.com/oldnewthing/20170111-00

Raymond Chen

I left an exercise to write a function apply_reverse_permutation in which each element in

the indices represents where the element should move to rather than where it comes

from.

This exercise is easier than the forward permutation case¹ because we can maintain a very

simple invariant: At all times, the state of the input variables describe the same result. All we

do is take a step closer to that result at each swap.

template<typename Iter1, typename Iter2>
void
apply_reverse_permutation(
 Iter1 first,
 Iter1 last,
 Iter2 indices)
{
using std::swap;
using T = typename std::iterator_traits<Iter1>::value_type;
using Diff = typename std::iterator_traits<Iter2>::value_type;
Diff length = std::distance(first, last);
for (Diff i = 0; i < length; i++) {
 while (i != indices[i]) {
 Diff next = indices[i];
 swap(first[i], first[next]);
 swap(indices[i], indices[next]);
 }
}
}

The idea here is that we have a “working position” that starts at the beginning of the

collection. We study the element in the working position and move it to its final destination

by swapping it with whatever happens to be there right now. We also swap the bookkeeping

so that we also remember where that swapped element needs to go eventually. As a result of

the swap, you now have a new element in the working position. Repeat as long as element in

the working position is not in the correct position. If you have a proper permutation, then

https://devblogs.microsoft.com/oldnewthing/20170111-00/?p=95165
https://blogs.msdn.microsoft.com/oldnewthing/20170104-00/?p=95115

2/3

eventually you will reach the end of the cycle and the element in the working position is one

that wants to be there. You can now move the working position to the next position until you

have moved through the entire collection.

The complexity of this algorithm is O(N) because each swap operation moves one element to

its final destination, and no element appears on the left hand side of a swap operation more

than once. (An element may end up swapping at most twice. Once when it swaps out of its

old position into the working position, and again when it swaps out of the working position to

its final position.)

Fans of tail recursion can rewrite this function tail-recursively, which might be instructive.

(Or it might not. At least it’ll be fun, if rewriting functions to be tail-recursive is your idea of

fun.)

As before, we can add error checking while preserving the same useful exit conditions: If an

error occurs, the original collection and the indices are permuted in an unspecified way.

As before, there are two error cases. One is that an index is out of range. That’s easy to check.

The other is that an index appears more than once. This could be detected in a number of

ways. One way is to detect that we have swapped more than length items through the

working position, because the length of a cycle in a permutation cannot exceed the number of

elements. But I’m going to use the same technique we used for the forward permutation:

When we realize that we are about to swap an element that has already been swapped into

position. In other words, if the element at the destination already thinks that it’s at the

correct destination, then we have an error because two elements both want to go to the same

destination.

3/3

template<typename Iter1, typename Iter2>
void
apply_reverse_permutation(
 Iter1 first,
 Iter1 last,
 Iter2 indices)
{
using T = typename std::iterator_traits<Iter1>::value_type;
using Diff = typename std::iterator_traits<Iter2>::value_type;
Diff length = std::distance(first, last);
for (Diff i = 0; i < length; i++) {
 while (i != indices[i]) {
 Diff next = indices[i];
 if (next < 0 || next >= length) {
 throw std::range_error("Invalid index in permutation");
 }
 if (next == indices[next]) {
 throw std::range_error("Not a permutation");
 }
 swap(first[i], first[next]);
 swap(indices[i], indices[next]);
 }
}
}

¹ This is different from the forward permutation, where the work of rotating the elements

through a cycle leaves the inputs in a temporarily unstable state. We saw last time that before

we could report an error, we had to restore some state before reporting an error, and that

state that we restored didn’t even correspond meaningfully to the intermediate state. It

merely corresponded to the original state in a very weakly-specified way.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20170110-00/?p=95155
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

