
1/2

February 9, 2017

Suspicious memory leak in std::basic_string
devblogs.microsoft.com/oldnewthing/20170209-00

Raymond Chen

A customer asked for assistance debugging a memory leak. Their memory leak detection tool

was reporting a leak in the following call stack:

ntdll!RtlAllocateHeap
Contoso!malloc
Contoso!Allocator<unsigned short>::allocate
Contoso!std::basic_string<unsigned short,std::char_traits<unsigned
short>,Allocator<unsigned short>,_STL70>::_Copy
Contoso!std::basic_string<unsigned short,std::char_traits<unsigned
short>,Allocator<unsigned short>,_STL70>::_Grow
Contoso!std::basic_string<unsigned short,std::char_traits<unsigned
short>,Allocator<unsigned short>,_STL70>::assign
Contoso!std::basic_string<unsigned short,std::char_traits<unsigned
short>,Allocator<unsigned short>,_STL70>::assign
Contoso!std::basic_string<unsigned short,std::char_traits<unsigned
short>,Allocator<unsigned short>,_STL70>::operator=
Contoso!ConfigurationImpl::validate

“The Configuration Impl object itself is not being leaked. Just the string inside it.”

The Visual C++ team reported that there are no known memory leaks in STL70. However,

the code above is using a custom allocator, so they asked to see more of the customer’s code.

And they found the smoking gun, but it wasn’t in the allocator. It was in the class constructor.

ConfigurationImpl::ConfigurationImpl()
{
 // Initialize all members to zero.
 memset(this, 0, sizeof(ConfigurationImpl));
}

basic_string , like all STL objects, is non-POD. A POD type is roughly¹ something that

can be declared in C as a plain old struct , such as struct Pod { int x; int y; }; .

POD types can be treated as a blob of bytes that you can manipulate with memset , memcpy ,

and such. Non-POD types, on the other hand, are those with things like constructors,

https://devblogs.microsoft.com/oldnewthing/20170209-00/?p=95397

2/2

destructors, virtual methods, all that fancy C++ stuff. You cannot treat them as just a blob of

bytes because they have other fancy behaviors attached, and treating them as a blob of bytes

bypasses (and may even damage) those fancy behaviors.

In this case, using memset to zero out a basic_string wipes out all the work that was

performed by the basic_string constructor and results in the dreaded undefined

behavior. Maybe undefined behavior manifests itself as a memory leak. Maybe it manifests

itself as a crash. Maybe it manifests itself as time travel.

In practical terms, what you have there is memory corruption. When you have memory

corruption, crazy things can happen. So don’t corrupt memory.

The customer thanked us for our assistance and fixed their code.

¹This is a simplified discussion, so don’t haul out your language-lawyer pitchforks.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

