
1/3

March 15, 2017

How do I show the sharing pane from a Win32 desktop
application?

devblogs.microsoft.com/oldnewthing/20170315-00

Raymond Chen

A customer wanted to show the sharing pane from their Win32 desktop application. In a

UWP application, this would be done by calling Windows.Application Model.Data ‐

Transfer.Data Transfer Manager.Show Sharing UI() . Let’s do it in a Win32 desktop app by

following the basic rules for projection: Static methods are represented as methods on a

“Statics” interface on the activation factory.

Start with the scratch program and make these changes. (Remember, Little Programs do

little to no error checking.)

#include <wrl/client.h>
#include <wrl/wrappers/corewrappers.h>
#include <windows.applicationmodel.datatransfer.h>
#include <tchar.h> // Huh? Why are you still using ANSI?
#include <roapi.h>

namespace WRL = Microsoft::WRL;
namespace dt = ABI::Windows::ApplicationModel::DataTransfer;

using Microsoft::WRL::Wrappers::HStringReference;

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)
{
 switch (ch) {
 case TEXT(' '):
 {
 WRL::ComPtr<dt::IDataTransferManagerStatics> dtmStatics;
 RoGetActivationFactory(HStringReference(
 RuntimeClass_Windows_ApplicationModel_DataTransfer_DataTransferManager)
 .Get(), IID_PPV_ARGS(&dtmStatics));
 dtmStatics->ShowShareUI();
 }
 break;
 }
}

HANDLE_MSG(hwnd, WM_CHAR, OnChar);

https://devblogs.microsoft.com/oldnewthing/20170315-00/?p=95735
https://blogs.msdn.microsoft.com/oldnewthing/20160629-00/?p=93775
https://blogs.msdn.microsoft.com/oldnewthing/20030723-00/?p=43073

2/3

Fire up this program, hit the space bar, and… nothing happens.

Okay, so maybe we need to do a tiny bit of error checking after all. The call to Show Share UI

fails with E_NOT_SET . The reason is that the Show Share UI method has an implicit

dependency on the current thread’s Core Window , because it needs to know which window is

being shared. But since we are a Win32 desktop program, we don’t have a Core Window .

Oh no, what do we do?

Enter the interop pattern.

To accommodate Win32 desktop programs, there is a parallel universe of HWND -based

methods. In places where WinRT depends on the current thread’s Core Window , this

alternative universe offers a similarly-named method, but with the For Window suffix,

indicating that it operates on classic Win32 HWND s rather than fancy-pants Core Window s.

One component of this parallel universe of -For Window methods consists of interfaces that

end in the name Interop . In our case, it’s IData Transfer Manager Interop . This

interface is available on the activation factory, the same as the IData Transfer Manager ‐

Statics interface. The general pattern is as follows:

XxxStatics XxxInterop

Get For Current View Get For Window

Do Something (implied “for current view”) Do Something For Window

In our case, we have a Show Sharing UI() method on the Statics interface, so the

corresponding interop method is called Show Sharing For WIndow() .

#include <shlobj.h> // IDataTransferManagerInterop

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)
{
 switch (ch) {
 case TEXT(' '):
 {
 WRL::ComPtr<dt::IDataTransferManagerInterop> dtmInterop;
 RoGetActivationFactory(HStringReference(
 RuntimeClass_Windows_ApplicationModel_DataTransfer_DataTransferManager)
 .Get(), IID_PPV_ARGS(&dtmInterop));
 dtmInterop->ShowShareUIForWindow(hwnd);
 }
 break;
 }
}

3/3

Okay, so now we show the share pane, but the pane just offers to share a screen shot. How

can we get the pane to offer custom data provided by the program? We’ll look at that next

time.

Bonus chatter: One of my colleagues noted that “data transfer manager” is a poor name for

the class, seeing as transferring data is what computers do most of the time anyway.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

