
1/5

March 16, 2017

How do I provide data to the sharing pane from a Win32
desktop application?

devblogs.microsoft.com/oldnewthing/20170316-00

Raymond Chen

Last time, we were able to show the sharing pane from a Win32 desktop application, but we

didn’t provide any information to the sharing pane, so all it did was offer to share a screen

shot. Today, let’s provide some data.

This is a continuation of the interop pattern. Repeating the table we had from last time:

XxxStatics XxxInterop

Get For Current View Get For Window

Do Something (implied “for current view”) Do Something For Window

Last time, we used the second case, converting Show Sharing UI to Show Sharing UI For ‐

Window . Today we’re going to use the first case: Converting Get For Current View to Get ‐

For Window .

Start with a blank scratch program and make these changes. (Remember, Little Programs do

little to no error checking.)

https://devblogs.microsoft.com/oldnewthing/20170316-00/?p=95745
https://blogs.msdn.microsoft.com/oldnewthing/20030723-00/?p=43073

2/5

#include <wrl/client.h>
#include <wrl/event.h>
#include <wrl/wrappers/corewrappers.h>
#include <windows.applicationmodel.datatransfer.h>
#include <shlobj.h> // IDataTransferManagerInterop
#include <tchar.h> // Huh? Why are you still using ANSI?
#include <roapi.h>

namespace WRL = Microsoft::WRL;
namespace awf = ABI::Windows::Foundation;
namespace dt = ABI::Windows::ApplicationModel::DataTransfer;

using Microsoft::WRL::Wrappers::HStringReference;

WRL::ComPtr<IDataTransferManagerInterop> g_dtmInterop;
WRL::ComPtr<DT::IDataTransferManager> g_dtm;
EventRegistrationToken g_dataRequestedToken;

Note that in real life, these global variables would be instance variables of some C++ class.

3/5

BOOL
OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)
{
 RoGetActivationFactory(HStringReference(
 RuntimeClass_Windows_ApplicationModel_DataTransfer_DataTransferManager)
 .Get(), IID_PPV_ARGS(&g_dtmInterop));

 g_dtmInterop->GetForWindow(hwnd, IID_PPV_ARGS(&g_dtm));

 auto callback = WRL::Callback<WF::ITypedEventHandler<
 DT::DataTransferManager*, DT::DataRequestedEventArgs*>>(
 [](auto&&, DT::IDataRequestedEventArgs* e)
 {
 WRL::ComPtr<DT::IDataRequest> request;
 e->get_Request(&request);

 WRL::ComPtr<DT::IDataPackage> data;
 request->get_Data(&data);

 WRL::ComPtr<DT::IDataPackagePropertySet> properties;
 data->get_Properties(&properties);

 // Title is mandatory
 properties->put_Title(HStringReference(L"Title from Win32").Get());

 // Description is optional
 properties->put_Description(HStringReference(L"This text came from a Win32
app").Get());

 data->SetText(HStringReference(L"Text from Win32 app!").Get());

 return S_OK;
 });

 g_dtm->add_DataRequested(callback.Get(), &g_dataRequestedToken);

 return TRUE;
}

void
OnDestroy(HWND hwnd)
{
 g_dtm->remove_DataRequested(g_dataRequestedToken);
 g_dtm.Reset();
 g_dtmInterop.Reset();
 PostQuitMessage(0);
}

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)
{
 switch (ch) {

4/5

 case TEXT(' '):
 g_dtmInterop->ShowShareUIForWindow(hwnd);
 }
 break;
 }
}

HANDLE_MSG(hwnd, WM_CHAR, OnChar);

Okay, let’s see what happened here.

When the window is created, we get the interop interface and save it in the global variable for

later use. We then call Get For Window to obtain the Data Transfer Manager for our

window. In WinRT this would have been a call to Get For Current View .

That’s all for the interop part of this exercise. Everything else is just operating on the WinRT

objects at the ABI level instead of at the projection level.

Next we create a callback handler for the Data Requested event. We’ll look at the body of

the handler later.

We then register the handler for the event by calling add_Data Requested and save the

registration token so we can unregister later.

Okay, now to look inside the callback: This is a direct translation of Data Transfer Manager

from projection back into ABI. Reading a property becomes a call to the

get_PropertyName method, and writing a property becomes a call to the

put_PropertyName method. In our case, we take the Data Requested Event Args and get

the Request property, which is an IData Request . From the IData Request we set the

Title and Description properties, and use the SetText method to provide the text

that we are sharing.

At destruction, we unregister the event and release the objects.

The final snippet of code is what we saw last time: When the user hits the space bar, open the

share pane. But this time, the share pane actually shows something interesting, because our

Data Requested event handler provides text to be shared.

Of course, in a real program, you would presumably offer text or other content that is based

on the current state or selection rather than just spitting out hard-coded content, but this is

just a Little Program.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

