
1/2

March 17, 2017

If I want to maintain a free list of pages, should I use
MEM_RESET or MEM_DECOMMIT?

devblogs.microsoft.com/oldnewthing/20170317-00

Raymond Chen

A customer had a memory-intensive application, and one of the things they do to avoid

address space fragmentation is to maintain a list of recently-freed memory and satisfying

future allocations from that free list. (The free list has a cap to avoid permanent memory

growth, because a cache with a bad policy is another name for a memory leak.)

The customer saw two possible ways of managing the memory on the free list:

1. Use Virtual Alloc(MEM_RESET) when the pages go on the free list. When a page is

allocated from the free list, just hand it out. The old contents may be lost, but that’s

okay.

2. Use Virtual Alloc(MEM_DECOMMIT) when the pages go on the free list. When a page

is allocated from the free list, use Use Virtual Alloc(MEM_COMMIT) to put memory

back in place.

“We don’t care about the contents of the free pages. We just want to reuse the virtual address

space. We definitely don’t want the pages swapped out to disk, because the contents are by

definition uninteresting.” The customer asked for advice on choosing between the two

options.

One tweak you can make to the MEM_RESET algorithm is to couple it with Virtual Unlock

to remove the page from the working set. This reduces physical memory usage while

maintaining the commit charge for the page. The downside is that if you remove pages from

the working set, then you will incur CPU cycles when the pages are soft-faulted in, and you

may create contention on the working set lock.

As for MEM_DECOMMIT algorithm, one of the things you have to watch out for is that the

MEM_COMMIT may fail, and you now have an error case to deal with, Mind you, this is

probably an error case you already have to deal with, because if the free list is empty, you

need to go allocate memory the old-fashioned way, and that allocation may fail.

https://devblogs.microsoft.com/oldnewthing/20170317-00/?p=95755
https://blogs.msdn.microsoft.com/oldnewthing/20060502-07/?p=31333

2/2

On the other hand, repeatedly committing, accessing, and decommitting memory can be

expensive. Decommitted pages go onto the system free list, and they need to be zeroed out by

the operating system before they are given back. This is probably going to be significantly

slower than MEM_RESET .

Those are some of the pros and cons. The customer is advised to run their own performance

tests to see which way works best for them. Fortunately, this appears to be a relatively simple

thing to test both ways because the behavior is isolated in the application’s internal page

manager.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

