
1/2

March 31, 2017

A survey of the various ways of creating GDI bitmaps
with predefined data

devblogs.microsoft.com/oldnewthing/20170331-00

Raymond Chen

Suppose you have a buffer full of pixels and you want to create a GDI bitmap that contains

those pixels.

We’ll start with the CreateBitmap function. This creates a device-dependent bitmap with the

pixels you provide. The weird thing about this function is that it’s a device-dependent bitmap,

but there’s no parameter that specifies the device! As a result, the bitmap has the format you

specify, but you can select it only into device contexts that are compatible with the bitmap

format. For example, if you create a 4bpp bitmap, then you can select it only into 4bpp device

contexts.¹

Next up is the misleadingly-named CreateDIBitmap function. Even though the DI stands for

device independent, this function does not create a device-independent bitmap. It creates a

device-dependent bitmap that is compatible with the provided device context. The reason it’s

called DI is that you can provide pixels in a device-independent format, and those pixels will

be used to initialize the bitmap. As noted in the documentation, the behavior is functionally

equivalent to CreateCompatibleBitmap followed by SetDIBits .

If it’s a device-independent bitmap you want, then the function to use is CreateDIBSection.

The simplest use of this function creates a device-independent bitmap and gives you a

pointer to the in-memory pixel buffer. You can then manipulate the pixel buffer directly, say,

by memcpy ing the bytes from your original buffer.

The fancier use of this function creates a device-independent bitmap around existing

memory. The memory needs to be in a file mapping object, either a file mapping object

created from a file or (more often) a file mapping object created from the page file (in other

words, a shared memory block). You can then specify the byte offset within the file mapping

at which the pixel buffer starts. In this case, the memory is not copied; the memory in the file

mapping object is the backing memory for the bitmap. If you modify the bitmap, then the

contents of the file mapping object change; if you modify the contents of the file mapping

object, you modify the bitmap.

https://devblogs.microsoft.com/oldnewthing/20170331-00/?p=95875
https://msdn.microsoft.com/library/dd183485(v=vs.85).aspx
https://msdn.microsoft.com/library/dd183491(v=vs.85).aspx
https://msdn.microsoft.com/library/dd183494(v=vs.85).aspx

2/2

Here’s the table:

Function
Type of
bitmap

Resulting
format Source pixels

Must
format
match?

CreateBitmap Device-
dependent

As
specified

Copied Yes

CreateDIBitmap Device-
dependent

Device-
compatible

Copied No

CreateDIBSection
without hSection

Device-
independent

As
specified

Uninitialized (copy
them yourself)

Yes

CreateDIBSection
with hSection

Device-
independent

As
specified

Shared Yes

In the above table, the Resulting format column describes the pixel format of the returned

bitmap. The Source pixels column describes what happens to the pixels you pass as the

source pixels: Are they copied into the bitmap, or does the bitmap share the memory with the

source pixels? The Must format match? column specifies whether the format of the source

pixels must match the pixel format of the returned bitmap. If Must format match? is No,

then the system will perform a format conversion.

¹ Monochrome bitmaps are compatible with any device context and have special behavior

when selected into color device contexts.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20061114-01/?p=29013
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

