
1/4

April 6, 2017

What can I do if I want to throw a C++ exception from my
InitOnce callback?

devblogs.microsoft.com/oldnewthing/20170406-00

Raymond Chen

Suppose you want to use the Init Once Execute Once function to perform one-time

initialization, but your initialization function might throw a C++ exception. We know that

this is not allowed because you don’t control all the frames the exception is being thrown

across, so what are your options?

The naïve solution is to catch the exception before it escapes your callback, and then rethrow

it on the other side.

void Sample()
{
 struct State {
 std::exception_ptr p;
 // other members you want to access from the lambda
 } state;
 if (!InitOnceExecuteOnce(&g_InitOnce,
 [](PINIT_ONCE InitOnce, void* Parameter, void** Context)
 -> BOOL
 {
 auto s = reinterpret_cast<State*>(Parameter);
 try {
 init_stuff();
 return TRUE;
 } catch (std::exception& e) {
 s->p = std::current_exception();
 return FALSE;
 }
 }, &state, nullptr)) {
 // Failed due to exception. Rethrow now that we are
 // safely outside the InitOnceExecuteOnce function.
 std::rethrow_exception(state.p);
 }
}

A less cumbersome solution is to use synchronous two-phase initialization:

https://devblogs.microsoft.com/oldnewthing/20170406-00/?p=95915
https://blogs.msdn.microsoft.com/oldnewthing/20120910-00/?p=6653
https://blogs.msdn.microsoft.com/oldnewthing/20161222-00/?p=94995

2/4

void Sample()
{
 void* result;
 BOOL pending;
 if (!InitOnceBeginInitialize(&g_InitOnce, 0,
 &pending, &result)) {
 if (pending) {
 try {
 init_stuff();
 } catch (...) {
 InitOnceComplete(&g_InitOnce,
 INIT_ONCE_INIT_FAILED, result);
 throw;
 }
 InitOnceComplete(&g_InitOnce, 0, result);
 }
 }
}

Synchronous two-phase initialization performs the initialization inline rather than in a

callback, which saves you the trouble of having to save the exception in one place and

rethrow it in another place. You can just tell the InitOnce engine that initialization failed and

then allow the exception to propagate.

You might decide to wrap this pattern inside an RAII type.

3/4

class InitOnceGuard
{
public:
 InitOnceGuard(PINIT_ONCE initOnce) :
 m_initOnce(initOnce),
 m_success(InitOnceBeginInitialize(initOnce, 0, &m_pending, nullptr)),
 m_status(INIT_ONCE_INIT_FAILED)
 {
 }

 ~InitOnceGuard()
 {
 if (NeedInitialization()) InitOnceComplete(m_initOnce, m_status, nullptr);
 }

 InitOnceGuard(const InitOnceGuard&) = delete;
 InitOnceGuard(InitOnceGuard&&) = delete;
 InitOnceGuard& operator=(const InitOnceGuard&) = delete;
 InitOnceGuard& operator=(const InitOnceGuard&&) = delete;

 bool NeedInitialization() { return m_success && m_pending; }

 // If you don't Complete, then the guard assumes that initialization failed.
 void Complete() { m_status = 0; }

private:
 PINIT_ONCE m_initOnce;
 bool m_success;
 bool m_pending;
 DWORD m_status;
}

void Sample()
{
 InitOnceGuard guard(&g_InitOnce);
 if (guard.NeedInitialization()) {
 init_stuff();
 guard.Complete();
 }
}

If the guard destructs without ever being Complete d, either because of an exception, or

because the caller decided that initialization failed in an unexceptional way, then the

destructor will tell the InitOnce engine that initialization failed. This will unblock any other

threads that are waiting for initialization to complete and allow them to give it a try.

If the guard is Complete d, then its destructor tells the InitOnce engine that initialization

was successful.

4/4

After thinking about all that, you might realize that the fact that you’re throwing C++

exceptions means that you’re already committed to C++, so you may as well go all in: Use

std::call_once or C++ static locals. These are part of the C++ standard and are fully

exception-aware. Of course, it assumes that all the frames you are throwing across came from

the same C++ compiler.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

