
1/3

May 11, 2017

How to calculate the resulting security descriptor of a
child object without creating it

devblogs.microsoft.com/oldnewthing/20170511-00

Raymond Chen

The Create Private Object Security function is part of a family of functions intended for

programs that implement security descriptors for their own custom objects. Normally, you

would let the kernel object manager deal with security descriptors, but if your object isn’t a

kernel object, then you have to do your own security management. These functions let you

give your objects a security model that matches those of kernel objects.

The Create Private Object Security function is one of the functions for assigning security

descriptors to sub-objects. It understands the rules for “container inherit” and “inherit only”

as well as the magic SIDs like “creator owner”. This is what your custom Create Sub Object

function uses to generate the security descriptor for a new sub-object.

But we can use it here to calculate the security descriptor that would be applied to a

subdirectory. We pretend that we are the file system, managing our custom “directory”

object.

 GENERIC_MAPPING fileGenericMapping = {
 FILE_GENERIC_READ,
 FILE_GENERIC_WRITE,
 FILE_GENERIC_EXECUTE,
 FILE_GENERIC_ALL,
 };
 PSECURITY_DESCRIPTOR childSd;
 CreatePrivateObjectSecurity(
 parentSd, // ParentDescriptor
 nullptr, // CreatorDescriptor
 &childSd, // NewDescriptor
 TRUE // IsDirectoryObject
 nullptr, // Token
 &fileGenericMapping); // GenericMapping
 ...
 DestroyPrivateObjectSecurity(childSd);

The Create Private Object Security gives you the security descriptor which results from

the information you pass in:

https://devblogs.microsoft.com/oldnewthing/20170511-00/?p=96145

2/3

The security descriptor of the parent object. In our case, it’s the security descriptor of

the parent directory.

An optional custom security descriptor for the child object. In our case, we pass NULL

to indicate that we want to inherit from the parent.

Whether the sub-object is itself a container. The function uses this to decide whether

“container inherit” ACEs apply to the new object.

An optional token representing the user doing the creating. This is used to set the

owner and group on the resulting security descriptor, as well as knowing what “creator

owner” ACEs should be converted to. We pass NULL to say that the function should

use the current default token.

A GENERIC_MAPPING structure that specifies how generic access bits should be

converted. Fortunately, the generic mapping for file system objects is documented, and

it even has convenient names that we can use.

The theory is that this could be used to avoid the race condition when creating a folder that

inherits its parent’s ACL, and then overriding part of it. That race condition exists in the

period of time after the subdirectory is created with default attributes and before the

program can apply the new seurity attributes. During that time, somebody might gain access

to the directory in a form that would have been disallowed by your override.

Using this technique, you can precalculate what the default attributes would be, then apply

your custom override, and then pass those security attributes when you call Create ‐

Directory . This removes the race window where the subdirectory briefly has the wrong

security attributes.

Unfortunately, you have other problems.

For one thing, you opened a different race condition: If the security attributes of the parent

directory change, then you will apply those stale attributes to the subdirectory.

But the worse thing is that I glossed over the hard part: getting the security descriptor of the

parent directory. The Create Private Object Security function is intended to be used by

the code that is managing security of its custom objects, so it has full access to all the security

descriptors. But in this case, we are an outside operator, and getting access to that security

descriptor may not be possible. We may not have READ_CONTROL access to the DACL. We

may not have ACCESS_SYSTEM_SECURITY rights to read the SACL.

So this idea sounded good on paper, but runs into problems in practice. Still, I mentioned it

because it gives me an excuse to write about the Create Private Object Security function.

Raymond Chen

Follow

https://msdn.microsoft.com/library/windows/desktop/aa364399(v=vs.85).aspx
https://blogs.msdn.microsoft.com/oldnewthing/20170223-00/?p=95545
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

