
1/3

May 19, 2017

Debugging a GDI resource leak: Case study
devblogs.microsoft.com/oldnewthing/20170519-00

Raymond Chen

I was asked to help debug a problem. A program was leaking GDI bitmaps like crazy, and

after a while, the GDI resource handle count reached 9,999, at which point GDI said, “That’s

it, I’m cutting you off.”

The problem isn’t discovered until after the limit has been reached.

To debug this, I’m gong to use different poor man’s way of identifying memory leaks. We

begin the story with a GDI handle that has been identified as leaked: 0x13054e2f . My first

step is to get some basic information about this GDI object by simulating a call to Get ‐

Object .

0:061> .dvalloc 1
Allocated 1000 bytes starting at 00000000`03610000

First, I allocated some memory that I can use to hold the BITMAP structure.

ntdll!DbgBreakPoint:
00007ffb`65ef7570 int 3
0:061> t
ntdll!DbgBreakPoint:
00007ffb`65ef7571 ret
0:061> r rip=gdi32!GetObjectW
0:061> r r8=0x00000000`03610000
0:061> r rdx=0x68
0:061> r rcx=0x13054e2f
0:061> r
GDI32!GetObjectW:
00007ff9`9658e2f0 mov qword ptr [rsp+8],rbx

Next, I simulate a call to the Get ObjectW function¹ by setting up the inbound parameter

registers: rcx is the GDI object we are geting information about, rdx is the size of the

output buffer, r8 is the output buffer itself (which we just allocated).

I’m pulling a super-sneaky trick here. Normally, we reserve shadow space for the outbound

call, and then simulate the call instruction by pushing the return address on the stack. But

we didn't do any of that here. We just moved rip directly to the function we wanted to call.

https://devblogs.microsoft.com/oldnewthing/20170519-00/?p=96195
https://blogs.msdn.microsoft.com/oldnewthing/20050815-11/?p=34583
https://blogs.msdn.microsoft.com/oldnewthing/20151016-00/?p=91341

2/3

But I can skip those steps because I stepped to the ret instruction. This means that the

stack is already set up the way it would be immediately upon entry to the function. We are

reusing the stack frame of the Dbg Break Point function! We are reusing the shadow space

provided by the caller, and we are taking advantage of the proper stack alignment established

by the caller.

0:061> gu
ntdll!DbgUiRemoteBreakin+0x34:
00007ff9`9730f4f4 jmp ntdll!DbgUiRemoteBreakin+0x36 (00007ff9`9730f4f6)
0:061> r
rax=0000000000000020 rbx=00007ff99730f4c0 rcx=00007ff9965b877a
rdx=0000000000000000 rsi=0000000000000000 rdi=0000000000000000
rip=00007ff99730f4f4 rsp=0000000007a7f7e0 rbp=0000000000000000
r8=0000000007a7f7a8 r9=0000000000000000 r10=0000000000000000
r11=0000000000000206 r12=0000000000000000 r13=0000000000000000
r14=0000000000000000 r15=0000000000000000
iopl=0 nv up ei pl nz na pe nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202
ntdll!DbgUiRemoteBreakin+0x34:
00007ff9`9730f4f4 jmp ntdll!DbgUiRemoteBreakin+0x36 (00007ff9`9730f4f6)
0:061> dd 0x00000000`03610000 L8
00000000`03610000 00000000 00000010 00000010 00000002
00000000`03610010 00010001 fffff901 00000000 00000000
0:061> dt contoso!BITMAP 0x00000000`03610000
 +0x000 bmType : 0n0
 +0x004 bmWidth : 0n16
 +0x008 bmHeight : 0n16
 +0x00c bmWidthBytes : 0n2
 +0x010 bmPlanes : 1
 +0x012 bmBitsPixel : 1
 +0x018 bmBits : (null)

I run the Get ObjectW function with the gu command, which means "go until the current

function returns". When it returns, I verify that the call succeeded (by checking the return

value in rax), and the dump the BITMAP structure.

This tells me that I have a 16×16 monochrome bitmap. Monochrome bitmaps are rarely-used

in Windows nowadays. One place you'll see them is in icons, since an icon consists of two

bitmaps: A monochrome mask and a color image.

So let's assume that we're leaking the mask of an icon. These things come out of two

functions: Get Icon Info and Get Icon Info Ex , so I set breakpoints on both. (Actually

three functions since Get Icon Info Ex has both Unicode and ANSI variations.)

0:061> bp user32!geticoninfo
0:061> bp user32!geticoninfoexw
0:061> bp user32!geticoninfoexa
0:061> g

3/3

The breakpoint hits pretty quickly.

Breakpoint 0 hit
USER32!GetIconInfo:
00007ff9`96cf1dd0 sub rsp,38h
0:005> kc3
Call Site
USER32!GetIconInfo
contoso!CNotificationIcon::IsIconCorrectSize+0x42
contoso!CNotificationIcon::Modify::__l6::
 <lambda_5a5c6bde8a112e005a026c6f34886eee>::operator()+0x1f

Going back to the source code for Is Icon Correct Size confirms that this function calls

Get Icon Info (presumably to get the size of the icon) and forgets to delete the two bitmaps.

Root cause identified. The fix is to delete those bitmaps.

Forgetting to delete the bitmaps that come out of the Get Icon Info family of functions is a

common mistake.

¹ The ntsd debugger doesn't have a C compiler built-in, so we have to build these things

manually.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

