
1/2

May 24, 2017

Some questions about unflushed data and calling
FlushFileBuffers on a new handle to a file

devblogs.microsoft.com/oldnewthing/20170524-00

Raymond Chen

Consider the following sequence of events:

1. Process A opens a file with Create File with attributes that include neither

FILE_FLAG_NO_BUFFERING nor FILE_FLAG_WRITE_THROUGH .

2. Process A writes to the file with Write File . These writes are internally buffered since

we didn’t disable buffering.

3. Process A crashes without calling Close Handle , and before the operating system’s

internal buffers are flushed to disk.

First question: Under these conditions, will the data written in step 2 be lazy-written to disk?

Or is it at risk of being lost forever because the handle wasn’t closed?

Let’s look at the last part first. Whether the process closed the handle before crashing doesn’t

affect the story, because the kernel will close all the handles as part of process cleanup. The

handle does get closed eventually. Whether the handle closure was done explicitly by the app

or implicitly by the kernel doesn’t affect the answer.

Okay, now let’s look at the first part: Yes, the data written in step 2 will eventually be lazy-

written to disk, assuming your system doesn’t crash before then.

And that’s the middle part of the question: The data is at risk of being lost forever, but not

because the handle wasn’t closed. It’s at risk of being lost forever because the system might

crash before it gets flushed out.

Okay, let’s extend the scenario:

4. Before the operating system flushes its internal buffers naturally, Process B opens the

same file, with the same attributes.

5. Process B calls Flush File Buffers .

Does this call to Flush File Buffers cause the data written by Process A to be flushed to

disk?

https://devblogs.microsoft.com/oldnewthing/20170524-00/?p=96215

2/2

Yes. A call to Flush File Buffers will flush data for that file, even if the data was written by

a different handle.

If Flush File Buffers is never called, then the operating system will flush the buffer at its

convenience.

Note: In step 2, the relevant call is Write File . If you write the data to the file using a

runtime-provided function like fwrite , then that data might be sitting in the runtime’s

buffer without ever triggering a Write File . Only when the data is written with Write ‐

File does the data actually reach the operating system’s buffers.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

