
1/2

May 26, 2017

Why are hidden files with a leading tilde treated as super-
hidden?

devblogs.microsoft.com/oldnewthing/20170526-00

Raymond Chen

Open a command prompt and perform the following operations:

C:> cd /d %USERPROFILE%\Desktop
C:\Users\Bob\Desktop> echo 12345 > ~test.txt
C:\Users\Bob\Desktop> attrib +h ~test.txt

This creates a hidden file called ~test.txt on the desktop. Configure Explorer to show

hidden files. Observe that the ~test.txt file does not appear.

But wait, there’s more, if you’re running Windows 7 (but not Windows 8 or higher):

Configure Explorer to show both hidden files and protected system files. The ~test.txt

file will now appear, and it will be dimmed because it is hidden. Use Ctrl + C and

Ctrl + V to create a copy of the file. Observe that the copy has both the hidden and system

attributes, even though the original did not have the system attribute.

A customer discovered this behavior and wanted to know whether it was a bug or a feature

(or a buggy feature).

There are multiple things going on here, so let’s take them separately.

First, why doesn’t ~test.txt appear on the desktop even though Explorer is configured to

show hidden files?

This behavior dates back to Windows Vista. If there is a hidden file whose name begins with a

tilde, then Explorer treats it as if the system and hidden attributes are both set, causing the

file to be treated as super-hidden. That’s why you have to disable “Hide protected operating

system files” in order to see them.

Why does this rule exist?

In practice, hidden files that begin with a tilde are temporary files, usually to represent auto-

saved contents, or as part of a write-rename-delete save operation. These files are not

intended to be user-manipulated, so Explorer treats them as super-hidden so that the user

https://devblogs.microsoft.com/oldnewthing/20170526-00/?p=96235
https://blogs.msdn.microsoft.com/oldnewthing/20160329-00/?p=93214
https://blogs.msdn.microsoft.com/oldnewthing/20140317-00/?p=1493

2/2

won’t be tempted to rename or delete them and mess up the operation of the program that

created them.

Second, why does copying these artificially-super-hidden files cause the copy to become

super-hidden for real?

This is a case where Explorer faked itself out.

The code that creates item IDs for files reads the file attributes and records them for future

reference. It is this code that checks for the leading tilde and if found internally sets the

FILE_ATTRIBUTE_SYSTEM flag on the item it created. This is what causes hidden files

beginning with a tilde to be treated as super-hidden.

The problem is that this code ends up doing too good a job of fooling the rest of the shell.

There is no flag anywhere that says, “Psst, by the way, the system attribute you see on this

item? Yeah, it’s a total fabrication. The real file doesn’t have that attribute.”

When it comes time to copy the file, the shell looks at the item ID and says, “Well, it says here

that the original has the system attribute, so I’ll set the system attribute on the copy.” The

shell copy engine doesn’t know that the attribute is a lie.

This problem was fixed in Windows 8 as a side-effect of a re-write of the way the shell copy

engine copies files. The shell now uses the Copy File2 function to copy files, relying on the

kernel function to do the heavy lifting, and using the callback function to monitor progress

and possibly cancel the operation. The kernel function doesn’t know about these mysterious

shell item IDs. All it knows how to do is copy files, and it obtains the attributes directly from

the source file, which as we recall is marked hidden but not system.

Bonus chatter: The “heavy lifting” alluded to above can be quite substantial. In addition to

copying the file contents, it also copies the alternate data streams and file attributes, and can

also take advantage of things like copy offload.

Raymond Chen

Follow

http://tvtropes.org/pmwiki/pmwiki.php/Main/TheCakeIsALie
https://technet.microsoft.com/en-us/library/hh831628(v=ws.11).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

