
1/2

June 2, 2017

How likely is it that a window will receive a WM_NULL
message out of the blue?

devblogs.microsoft.com/oldnewthing/20170602-00

Raymond Chen

A customer discovered a bug in their control that resulted in a crash:

LRESULT CALLBACK MyWindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uMsg) {

 ...

 default:

 if (uMsg == g_customRegisteredMessage) {

 // For this message, the lParam is a pointer

 return HandleCustomMessage((SOMETHING*)lParam);

 }

 break;

 }

 return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

The problem is that under certain conditions, the control doesn’t initialize the g_custom‐

RegisteredMessage variable. If a WM_ NULL message arrives, the test

 if (uMsg == g_customRegisteredMessage) {

is true , and we take the lParam of the WM_ NULL message and treat it as a pointer.

Since the lParam of the WM_ NULL message is usually zero, this causes the program to

crash with a null pointer.

The customer fully acknowledged the bug. But their question was one of risk management.

How likely is a window going to receive the WM_ NULL mesasge? Knowing the likelihood of

the scenario would help them decide how critical the fix is. (And they weren’t able to

reproduce the problem in-house, so as far as they could determine, the likelihood was

effectively zero. And yet it was happening.)

The WM_ NULL message is not a common one, but it’s not uncommon either. Posting a

WM_ NULL is usually done by a window to itself in order to wake up its message loop. This is

typically done when the program has a custom message loop, and it needs some of the non-

https://devblogs.microsoft.com/oldnewthing/20170602-00/?p=96266
https://devblogs.microsoft.com/oldnewthing/

2/2

message code to run. We saw an example of this some time ago where we posted a

WM_ NULL to let our message loop know that the pseudo-dialog has exited.

Posted WM_ NULL messages are usually done from a program to itself, and they are usually

posted as thread messages, not window messages, so they don’t normally come through the

window procedure.

Sending a WM_ NULL is a different story, though. It is a relative common technique to send

a WM_ NULL message to a window for the purpose of checking whether the window is

responding to messages. We used it to wait for a window to finish processing a foreground

change. Some system monitoring tools will periodically call SendMessageTimeout to send a

WM_ NULL to all windows, just to see if they are responding. Windows UI Automation uses

WM_ NULL messages help determine the window interaction state.

The customer could try running system monitoring tools or accessibility tools to increase the

likelihood of receiving a WM_ NULL message under normal use. (I mean, sure, they could

write a program that explicitly sends a WM_ NULL message to their window, but that

wouldn’t be anything a normal end-user would have.)

I suspect the customer will bump up the priority of this issue due to the accessibility angle.

People who use accessibility tools tend to really need them. It’s not like you can tell a person

with poor visual acuity, “Oh, just suck it up for a while.”

Bonus chatter: The customer wrote back. After further investigation, they found that the

problem was traced to a third party tool that their client was using, specifically this line of

code that sends a WM_ NULL message to the foreground window to determine whether it is

responding.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20050405-46/?p=35973
https://blogs.msdn.microsoft.com/oldnewthing/20161118-00/?p=94745
https://msdn.microsoft.com/en-us/library/aa359460(v=vs.85).aspx
https://github.com/Maximus5/ConEmu/blob/1b6bb22e8be3b0d29b10f23abfdd31aed44a756f/src/common/DefTermBase.h#L404
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

