
1/3

June 27, 2017

Extracting pages from a PDF document and saving them
as separate image files, JavaScript edition with Promises

devblogs.microsoft.com/oldnewthing/20170627-00

Raymond Chen

Last time, we converted the C# version of the PDF Document sample program so that it

saved the pages to disk as image files. Today we’ll port those changes to JavaScript with

Promises.

https://devblogs.microsoft.com/oldnewthing/20170627-00/?p=96475
https://github.com/Microsoft/Windows-universal-samples/tree/v1.0.11/Samples/PdfDocument


2/3

function viewPage() { 
 WinJS.log && WinJS.log("", "sample", "status"); 

 var pageNumber = parseInt(pageNumberBox.value, 10); 
 if (isNaN(pageNumber) || (pageNumber < 1) || 
   (pageNumber > pdfDocument.pageCount)) { 
   WinJS.log && WinJS.log("Invalid page number.", "sample", "error"); 
   return; 
 } 

 output.src = ""; 
 progressControl.style.display = "block"; 

 // Convert from 1-based page number to 0-based page index. 
 var pageIndex = pageNumber - 1; 

 var page = pdfDocument.getPage(pageIndex); 

 var picker = new Windows.Storage.Pickers.FileSavePicker(); 
 picker.fileTypeChoices["PNG image"] = [".png"]; 
 picker.pickSaveFileAsync().then(outfile => { 
   if (outfile) { 
     outfile.openTransactedWriteAsync().then(transaction => { 
       var options = new PdfPageRenderOptions(); 
       options.destinationHeight = page.size.height * 2; 
       options.destinationWidth = page.size.width * 2; 
       page.renderToStreamAsync(transaction.stream, options).then(() => { 
         transaction.close(); 
       }); 
     }); 
   } 
 }).done(() => { 
   page.close(); 
   // Delete the code that sets the blob into the image 
   progressControl.style.display = "none"; 
 }); 
} 

This is an uninspired direct translation of the C# code to JavaScript. We can imbue it with a

little JavaScript inspiration by flattening the promise chain a bit.



3/3

 var transaction; 
 var picker = new Windows.Storage.Pickers.FileSavePicker(); 
 picker.fileTypeChoices["PNG image"] = [".png"]; 
 picker.pickSaveFileAsync().then(outfile => { 
   if (outfile) { 
     return outfile.openTransactedWriteAsync(); 
   } 
 }).then(trans => { 
   transaction = trans; 
   if (transaction) { 
       var options = new PdfPageRenderOptions(); 
       options.destinationHeight = page.size.height * 2; 
       options.destinationWidth = page.size.width * 2; 
       return page.renderToStreamAsync(transaction.stream, options); 
   } 
 }).then(() => { 
   transaction && transaction.close(); 
 }).done(() => { 
   page.close(); 
   // Delete the code that sets the blob into the image 
   progressControl.style.display = "none"; 
 }); 

Instead of nesting the promises, I chained them, and each step of the chain checks whether

the previous step succeeded before proceeding. (If not, then that step does nothing.)

Alternatively, I could’ve thrown the Promise into an error state, but WinRT tries to reserve

exceptions for unrecoverable errors, primarily out-of-memory conditions for a small

allocation, or a programmer error. Errors that a program is expected to recover from are

generally reported by an in-API mechanism. (There are notable exceptions to this principle,

primarily in the I/O area.)

Anyway, you may have noticed that I used arrow functions, which are feature of ES6. Next

time, I’m going to take it even further.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

