
1/2

June 28, 2017

Extracting pages from a PDF document and saving them
as separate image files, JavaScript edition with async

devblogs.microsoft.com/oldnewthing/20170628-00

Raymond Chen

Last time, we converted the JavaScript version of the PDF Document sample program so that

it saved the pages to disk as image files. The asynchonous behavior was expressed via

Promises. Today we’ll use the async  and await  keywords which didn’t make ECMAScript

7, but may make it into ECMAScript 8. Support for it arrived in Microsoft Edge as an

experimental feature back in 2015.

https://devblogs.microsoft.com/oldnewthing/20170628-00/?p=96477
https://github.com/Microsoft/Windows-universal-samples/tree/v1.0.11/Samples/PdfDocument
https://blogs.windows.com/msedgedev/2015/09/30/asynchronous-code-gets-easier-with-es2016-async-function-support-in-chakra-and-microsoft-edge/


2/2

async function viewPage() { 
 WinJS.log && WinJS.log("", "sample", "status"); 

 var pageNumber = parseInt(pageNumberBox.value, 10); 
 if (isNaN(pageNumber) || (pageNumber < 1) || 
   (pageNumber > pdfDocument.pageCount)) { 
   WinJS.log && WinJS.log("Invalid page number.", "sample", "error"); 
   return; 
 } 

 output.src = ""; 
 progressControl.style.display = "block"; 

 // Convert from 1-based page number to 0-based page index. 
 var pageIndex = pageNumber - 1; 

 var page = pdfDocument.getPage(pageIndex); 

 var picker = new Windows.Storage.Pickers.FileSavePicker(); 
 picker.fileTypeChoices["PNG image2"] = [".png"]; 
 var outfile = await picker.pickSaveFileAsync(); 
 if (outfile) { 
   var transaction = await outfile.openTransactedWriteAsync(); 
   var options = new PdfPageRenderOptions(); 
   options.destinationHeight = page.size.height * 2; 
   options.destinationWidth = page.size.width * 2; 
   await page.renderToStreamAsync(transaction.stream, options); 
   transaction.close(); 
 } 
 page.close(); 
 progressControl.style.display = "none"; 
} 

The async  and await  keywords are analogous to their C# counterparts. Declaring a

function as async  causes it to return a Promise whose result is the nominal type of the

function. Inside an async  function, you can use the await  keyword to cause the

continuation to be connected to the resolution of the Promise you are awaiting.

There’s not much interesting to discuss here; it’s a straightforward translation of the C#

sample. Note that JavaScript doesn’t have a using  keyword, so we have to close()  the

closable objects manually.

Next time, we’ll move on to C++/CX.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

