
1/2

July 10, 2017

On the circular path from RAII to crazy-town back to RAII:
Thoughts on emulating C#’s using in C++

devblogs.microsoft.com/oldnewthing/20170710-00

Raymond Chen

Some follow-up notes on Emulating the C# using keyword in C++, primarily for the benefit

of people from reddit who stumbled into the series and didn’t understand the context of the

discussion, because this was really part 6 of the series begun the previous week, even though

it wasn’t labeled as such. (And the title itself was a party trick rather than a serious proposal.)

The main complication that prevented us from using RAII was the use of the Parallel

Patterns Library (PPL) to express asynchronous programming in C++.¹ The most general

pattern for asynchronous programming is that you start an operation, and then specify a

callback to be invoked when the operation completes. In traditional C-style programming,

this callback is a boring function pointer, coupled with some reference data so the callback

has context for why it is being called back. C++ provides lambdas which let you express the

continuation as a callback object, which is much more convenient since you can express the

control flow inline instead of having tiny pieces of control flow scattered all over your

program. And lambda capture makes it easy to express what pieces of information needs to

be carried forward to the continuation.

If we didn’t have any asynchronous operations, then a basic RAII class would do the trick:

When the RAII class destructs, the cleanup operation occurs. (In our example, the cleanup

operation is calling Close .) The difficulty in the asynchonous case is that it is cumbersome

to keep carrying this RAII class forward and preventing it from destructing until the entire

chain of continuations has completed. That’s where the ensure_ close and

shared_ close classes entered the picture. But you still had to remember to carry them

forward.

The magical step was the introduction of the not-yet-standard-but-hopefully-soon

co_await keyword. This transforms the function into a state machine, where each

co_await represents the end of a state. The current execution state is saved, and execution

of the task suspends. When the awaited operation completes, the execution state is restored

and the function resumes execution. This transformation is very tedious and error-prone to

perform by hand (especially when there are loops and branches), and in particular, it

https://devblogs.microsoft.com/oldnewthing/20170710-00/?p=96565
https://devblogs.microsoft.com/oldnewthing/
https://www.reddit.com/r/programming/comments/6l6b3e/emulating_the_c_using_keyword_in_c/
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://devblogs.microsoft.com/oldnewthing/

2/2

preserves RAII semantics: The automatic variables created by the pre-transformed function

become part of the execution state, and they are destructed at the “natural” time they would

have been destructed prior to transformation.

As a result, switching to co_await brings us full circle back to plain old RAII. Behind the

scenes, the compiler is doing the wacky transformations that we tried to mimic with

ensure_ close and shared_ close . But co_await lets us write the code in a far more

natural way.

¹ There’s also std::future , but its lack of composability makes it a poor choice for

asynchronous programming.

Raymond Chen

Follow

https://bartoszmilewski.com/2009/03/03/broken-promises-c0x-futures/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

