
1/2

July 10, 2017

On the circular path from RAII to crazy-town back to RAII:
Thoughts on emulating C#’s using in C++

devblogs.microsoft.com/oldnewthing/20170710-00

Raymond Chen

Some follow-up notes on
Emulating the C# using keyword in C++,
primarily for the benefit

of
people from reddit who stumbled into the series and
didn’t understand the context of the

discussion,
because this was really part 6 of the series begun the previous week,
even though

it wasn’t labeled as such.
(And the title itself was a party trick rather than a serious
proposal.)

The main complication that prevented us from using RAII was
the use of the
Parallel

Patterns Library (PPL)
to express asynchronous programming in C++.¹
The most general

pattern for asynchronous programming is that
you start an operation, and then specify a

callback
to be invoked when the operation completes.
In traditional C-style programming,

this callback is
a boring function pointer, coupled with some reference
data so the callback

has context for why it is being called back.
C++ provides lambdas which let you express the

continuation as
a callback object,
which is much more convenient since you can express the

control
flow inline instead of having tiny pieces of control flow scattered
all over your

program.
And lambda capture makes it easy to express what pieces of information
needs to

be carried forward to the continuation.

If we didn’t have any asynchronous operations, then a basic RAII
class would do the trick:

When the RAII class destructs, the cleanup operation occurs.
(In our example, the cleanup

operation is calling Close .)
The difficulty in the asynchonous case
is that it is cumbersome

to keep carrying
this RAII class forward and preventing it
from destructing until the entire

chain of continuations has completed.
That’s where the ensure_ close and

shared_ close classes entered the picture.
But you still had to remember to carry them

forward.

The magical step was the
introduction of the not-yet-standard-but-hopefully-soon

co_await keyword.
This
transforms the function into a state machine,
where each

co_await represents
the end of a state.
The current execution state is saved, and execution

of the task
suspends.
When the awaited operation completes, the execution state is
restored

and the function resumes execution.
This transformation is very tedious and error-prone to

perform
by hand (especially when there are loops and branches),
and in particular,
it

https://devblogs.microsoft.com/oldnewthing/20170710-00/?p=96565
https://devblogs.microsoft.com/oldnewthing/
https://www.reddit.com/r/programming/comments/6l6b3e/emulating_the_c_using_keyword_in_c/
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://devblogs.microsoft.com/oldnewthing/

2/2

preserves RAII semantics:
The automatic variables created by the pre-transformed function

become part of the execution state,
and they are destructed at the “natural” time they would

have
been destructed prior to transformation.

As a result, switching to co_await brings us full circle
back to plain old RAII.
Behind the

scenes, the compiler is doing the wacky transformations
that we tried to mimic with

ensure_ close
and shared_ close .
But co_await lets us write the code in a far more

natural way.

¹
There’s also
 std::future ,
but
its lack of composability
makes it a poor choice for

asynchronous programming.

Raymond Chen

Follow

https://bartoszmilewski.com/2009/03/03/broken-promises-c0x-futures/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

