
1/4

July 17, 2017

Revisions to previous discussion of the implementation
of anonymous methods in C#

devblogs.microsoft.com/oldnewthing/20170717-00

Raymond Chen

Welcome to CLR Week.

Yes, it’s been a long time since the last CLR Week. Some people might consider that a feature.

Anyway, I’m going to start by calling attention to some revisions to previous discussion of the

implementation of anonymous methods in C#.

Part 1

Part 2

Part 3

The first revision is one most people are well aware of, namely that the scope of the control

variable of a foreach statement is now the controlled statement. What this means for you is

that closing over the loop control variable of a foreach statement is not dangerous. Note,

however, that closing over the loop control variable of a for statement is still dangerous.

The second revision is that noncapturing lambdas are no longer wrappers around a static

method. Even if the lambda captures nothing, it is still converted to an instance method (of

an anonymous type).

The reason given by Kevin Pilch-Bisson is that “delegate invokes are optimized for instance

methods and have space on the stack for them. To call a static method they have to shift

parameters around.”

Let’s unpack that explanation.

Recall that instance methods have a hidden this parameter, whereas static methods do

not. Suppose you want to forward a call from one method to another. For concreteness, let’s

say you have

https://devblogs.microsoft.com/oldnewthing/20170717-00/?p=96625
https://blogs.msdn.microsoft.com/oldnewthing/20060802-00/?p=30263
https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20060804-00/?p=30233
https://ericlippert.com/2009/11/16/closing-over-the-loop-variable-considered-harmful-part-two/
http://stackoverflow.com/q/30897647/#comment49837759_30897727

2/4

class C1
{
public void M1(int x, int y, int z)
{
 System.Console.WriteLine("From {0} to {1} via {2}", x, y, z);
}
static public void S1(int x, int y, int z)
{
 System.Console.WriteLine("From {0} to {1} via {2}", x, y, z);
}
}

class C2
{
private C1 c1 = new C1();
static private C1 s1 = new C1();

public void M2(int x, int y, int z)
{
 c1.M1(x, y, z);
}
static public void S2(int x, int y, int z)
{
 C1.S1(x, y, z);
}
public void M2S(int x, int y, int z)
{
 C1.S1(x, y, z);
}
static public void S2M(int x, int y, int z)
{
 s1.M1(x, y, z);
}
}

Since the layouts for the parameters to both C1.M1() and C2.M2() method match,

C2.M2() can get away with the following:

Fetch this.c1 .

Validate that the fetched value is not null.

Replace this with the fetched value.

Jump to C1.M1 .

The assembly for C2.M2 on x86 would go something like this:

3/4

; fastcall convention passes
; the first parameter (this) in ecx
; the second parameter (x) in edx
; remaining parameters (y, z) on the stack

C2.M2:
 mov ecx, [ecx].c1 ; fetch this.c1
 cmp ecx, [ecx] ; null check
 jmp C1.M1 ; all the other parameters are already set

Similarly, forwarding a call from one static method to another can reuse the stack frame as-

is:

C2.S2:
 jmp C1.S1 ; all parameters are already set properly

However, forwarding from an instance method to a static method or vice versa isn’t so easy.

The compiler would either have to generate a traditional non-tail call:

C2.M2S:
 mov ecx, edx ; put x into ecx
 mov edx, [esp][4] ; put y into edx
 push edx, [esp][8] ; push z
 call C1.S1
 ret 8

C2.S2M:
 push [esp][4] ; push z
 push edx ; push y
 mov edx, ecx ; put x into edx
 mov ecx, [C2.s1] ; put C2.s1 into ecx
 cmp ecx, [ecx] ; null check
 call C1.M1 ; call it
 ret 8

Or maybe the compiler plays funny stack rewriting games:¹

https://blogs.msdn.microsoft.com/oldnewthing/20040108-00/?p=41163
https://blogs.msdn.microsoft.com/oldnewthing/20070816-00/?p=25553
https://blogs.msdn.microsoft.com/oldnewthing/20070816-00/?p=25553

4/4

C2.M2S:
 mov ecx, edx ; put x into ecx
 pop eax ; pop return address
 pop edx ; pop y into edx
 ; leave z on the stack
 push eax ; restore return address
 jmp C1.S1

C2.S2M:
 pop eax ; pop return address
 push edx ; push y
 push eax ; restore return address
 mov edx, ecx ; put x into edx
 mov ecx, [C2.s1] ; put C2.s1 into ecx
 cmp ecx, [ecx] ; null check
 jmp C1.M1

Both of these are worse than the case where the call is forwarded to a function of matching

ilk.

Since delegate invoke is done instance-style, the code to dispatch the delegate to the lambda

is more efficient if the lambda is also instance.

Since the language specification does not specify the nature of the lambda, whether the

delegate represents a static or instance method is an implementation detail that can change

at any time.

And it did.

¹ Note that these stack rewriting games are not available to x64 because of alignment

requirements. On x64, we are forced to generate a traditional non-tail call.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20070816-00/?p=25553
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

