
1/2

July 19, 2017

Do people write insane code with multiple overlapping
side effects with a straight face?

devblogs.microsoft.com/oldnewthing/20170719-00

Raymond Chen

On an internal C# discussion list, a topic that comes up every so often is asking about the

correct interpretation of statements like

 a -= a *= a;
 p[x++] = ++x;

I asked,

Who writes code like that with a straight face? It’s one thing to write it because you’re trying to
win the IOCCC or you’re writing a puzzle, but in both cases, you know that you’re doing
something bizarre. Are there people who write a -= a *= a and p[x++] = ++x; and
think, “Gosh, I’m writing really good code?”

Eric Lippert replied “Yes, there are most certainly such people.” He gave as one example a

book from an apparently-successful author (sales of over four million and counting) who

firmly believed that the terser your code, the faster it ran. The author crammed multiple side

effects into a single expression, used ternary operators like they were going out of style, and

generally believed that run time was proportional to the number of semicolons executed, and

every variable killed a puppy.

Sure, with enough effort, you could do enough flow analysis to have the compiler emit a

warning like “The result of this operation may vary depending upon the order of evaluation”,

but then you have to deal with other problems.

First of all, there will be a lot of false positives. For example, you might write

 total_cost = p->base_price + p->calculate_tax();

This would raise the warning because the compiler observes that the calculate_ tax

method is not const , so it is worried that executing the method may modify the

base_ price , in which case it matters whether you add the tax to the original base price or

https://devblogs.microsoft.com/oldnewthing/20170719-00/?p=96645
http://ericlippert.com/

2/2

the updated one. Now, you may know (by using knowledge not available to the compiler) that

the calculate_ tax method updates the tax locale for the object, but does not update the

base price, so you know that this is a false alarm.

The problem is that there are going to be an awful lot of these false alarms, and people are

just going to disable the warning.

Okay, so you dial things back and warn only for more blatant cases, where a variable is

modified and evaluated within the same expression. “Warning: Expression relies on the

order of evaluation.”

Super-Confident Joe Expert programmer knows that his code is awesome and the compiler is

just being a wuss. “Well, obviously the variable is incremented first, and then it is used to

calculate the array index, and then the result of the array lookup is stored back to the

variable. There’s no order of evaluation conflict here. Stupid compiler.” Super-Confident Joe

Expert turns off the warning. But then again, Super-Confident Joe Expert is probably a lost

cause, so maybe we don’t worry about him.

Joe Beginner programmer doesn’t really understand the warning. “Well, let’s see. I compiled

this function five times, and I got the same result each time. The result looks reliable to me.

Looks like a spurious warning.” The people who would benefit from the warning don’t have

the necessary background to understand it.

Sure enough, some time later, it came up again. Somebody asked why x ^= y ^= x ^= y

doesn’t work in C#, even though it works in C++. More proof that people write code that rely

upon multiple side effects, and they passionately believe that what they are doing is obvious

and guaranteed.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

