
1/3

July 20, 2017

Crash course in async and await
devblogs.microsoft.com/oldnewthing/20170720-00

Raymond Chen

I’m going to assume that you know how the async and await keywords work. If you need

a refresher, you can read Eric Lippert’s extensive exposition of the subject. Here’s the short

version. People who know how async and await work can go take a nap.

When you write a function that is marked async , then the function is broken up into a

series of mini-functions at each await call. The code executes synchronously up until the

first await , at which point the rest of the code is scheduled for resumption when the

awaited thing produces a result. Optionally, a task is returned so that the caller can schedule

its own continuation when the async function executes its return statement.

For example, let’s take this function:

async Task<int> GetTotalAsync()

{

 int total = GetStartValue();

 int increment = await GetIncrementAsync();

 return total + increment;

}

This is shorthand for the following, with error checking has been elided for expository

simplicity.

Task<int> GetTotalAsync()

{

 int total = GetStartValue();

 return GetIncrementAsync().ContinueWith((incrementTask) => {

 int increment = incrementTask.Result;

 return total + increment;

 });

}

(Actually, that’s not really what happens; here are the gory details.)

The point is that the function executes normally until it encounters the first await , at which

point it schedules itself as a continuation of the thing being awaited, and returns a new task

that represents the continuation. When the thing being awaited completes, execution

https://devblogs.microsoft.com/oldnewthing/20170720-00/?p=96655
https://blogs.msdn.microsoft.com/ericlippert/tag/async/
https://msdn.microsoft.com/en-us/magazine/hh456403.aspx

2/3

resumes with the continuation. That continuation might do some work, and then perform

another await , which once again schedules itself as a continuation of the thing being

awaited. Eventually, the original function runs to completion, at which point the chain of

tasks terminates with a result, namely the thing that the original function returned.

Note that when dealing with async functions, you have to distinguish with what the

function returns and what it produces as a result when it completes. The return value is the

thing that is returned synchronously by the function, typically a task of some sort. When

execution reaches the end of the task chain, the task is said to have completed. The thing that

comes out the end is called the result.

In other words, there are two ways to call an async function.

var task = SomethingAsync();

var result = await SomethingAsync();

If you call it without await then you get the raw task back. If you call it with await , then

when the task completes, you get the result.

People who know how async and await work can start waking up now. You still

know the stuff coming up next, but at least you’ll be primed for the discussion to come after.

There are three ways of writing an async function:

async Task<T> SomethingAsync() { ... return t; }

async Task SomethingAsync() { ... }

async void SomethingAsync() { ... }

In all the cases, the function is transformed into a chain of tasks. The difference is what the

function returns.

In the first case, the function returns a task that eventually produces the t .

In the second case, the function returns a task which has no product, but you can still

await on it to know when it has run to completion.

The third case is the nasty one. The third case is like the second case, except that you don’t

even get the task back. You have no way of knowing when the function’s task has completed.

The async void case is a “fire and forget”: You start the task chain, but you don’t care

about when it’s finished. When the function returns, all you know is that everything up to the

first await has executed. Everything after the first await will run at some unspecified

point in the future that you have no access to.

Now that I’ve set up the story, we’ll dig into the consequences next time.

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

