
1/3

July 21, 2017

The perils of async void
devblogs.microsoft.com/oldnewthing/20170721-00

Raymond Chen

We saw last time that async void is an odd beast, because it starts doing some work, and

then returns as soon as it encounters an await , with the rest of the work taking place at

some unknown point in the future.

Why would you possibly want to do that?

Usually it’s because you have no choice. For example, you may be subscribing to an event,

and the event delegate assumes a synchronous handler. You want to do asynchronous work

in the handler, so you use async void so that your handler has the correct signature, but

you can still await in the function.

The catch is that only the part of the function before the first await runs in the formal event

handler. The rest runs after the formal event handler has returned. This is great if the event

source doesn’t have requirements about what must happen before the handler returns. For

example, the Button.Click event lets you know that the user clicked the button, but it

doesn’t care when you finish processing. It’s just a notification.

On the other hand, an event like Suspending assumes that when your event handler

returns, it is okay to proceed with the suspend. But that may not be the case if your handler

contains an await . The handler has not logically finished executing, but it did return from

its handler, because the handler returned a Task which captures the continued execution of

the function when the await completes.

Aha, but you can fix this by making the delegate return a Task , and the event source would

await on the task before concluding that the handler is ready to proceed.

There are some problems with this plan, though.

One problem is that making the event delegate return a Task is that the handler might not

need to do anything asynchronous, but you force it to return a task anyway. The natural

expression of this results in a compiler warning:

https://devblogs.microsoft.com/oldnewthing/20170721-00/?p=96665

2/3

// Warning CS1998: This async method lacks 'await'

// operators and will run synchronously.

async Task SuspendingHandler(object sender, SuspendingEventArgs e)

{

 // no await calls here

}

To work around this, you need to add return Task.CompletedTask; to the end of the

function, so that it returns a task that has already completed.

A worse problem is that the return value from all but the last event handler is not used.

If the delegate invocation includes output parameters or a return value, their final value will
come from the invocation of the last delegate in the list.

(If there is no event handler, then attempting to raise the event results in a null reference

exception.)

So if there are multiple handlers, and each returns a Task , then only the last one counts.

Which doesn’t seem all that useful.

The Windows Runtime developed a solution to this problem, known as the Deferral Pattern.

The event arguments passed to the event handler includes a method called GetDeferral() .

This method returns a “deferral object” whose purpose in life is to keep the event handler

“logically alive”. When you Complete the deferral object, then that tells the event source that

the event handler has logically completed, and the event source can proceed.

If your handler doesn’t perform any await s, then you don’t need to worry about the

deferral.

void SuspendingHandler(object sender, SuspendingEventArgs e)

{

 // no await calls here

}

If you do an await , you can take a deferral and complete it when you’re done.

https://msdn.microsoft.com/library/aa664605(v=vs.71).aspx

3/3

async void SuspendingHandler(object sender, SuspendingEventArgs e)

{

 var deferral = e.SuspendingOperation.GetDeferral();

 // Even though there is an await, the suspending handler

 // is logically still active because there is a deferral.

 await SomethingAsync();

 // Completing the deferral signals that the suspending

 // handler is logically complete.

 deferral.Complete();

}

The Suspending event is a bit strange for historical reasons.

Starting in Windows 10, there is a standard Deferral object which also supports

IDisposable , so that you can use the using statement to complete the deferral

automatically when control leaves the block. If the Suspending event were written today,

you would be able to do this:

async void SuspendingHandler(object sender, SuspendingEventArgs e)

{

 using (e.GetDeferral()) {

 // Even though there is an await, the suspending handler

 // is logically still active because there is a deferral.

 await SomethingAsync();

} // the deferral completes when code leaves the block

}

Alas, we don’t yet have that time machine the Research division is working on, so the new

using -based pattern works only for deferrals added in Windows 10. A using -friendly

deferral will implement IDisposable . Fortunately, if you get it wrong and try to using a

non-disposable deferral, the compiler will notice and report an error: “CS1674: type used in a

using statement must be implicitly convertible to ‘System.IDisposable'”.

And that’s the end of CLR We… no wait! CLR Week will continue into next week! What has

the world come to!?

Raymond Chen

Follow

https://docs.microsoft.com/en-us/uwp/api/Windows.Foundation.Deferral
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

