
1/7

July 28, 2017

Can I throw a C++ exception from a structured
exception?

devblogs.microsoft.com/oldnewthing/20170728-00

Raymond Chen

A customer wanted to know if it was okay to throw a C++ exception from a structured

exception.

They explained that they didn’t want to compile their project with the /EHa switch, which

instructs the compiler to use the exception-handling model that catches both asynchronous

(structured) exceptions as well as synchronous (C++) exceptions. In other words, the catch

statement will catch both explicitly thrown C++ exceptions (raised by the throw statement)

as well as exceptions generated by the operating system, either due to notifications from the

CPU (such as an access violation or divide-by-zero) or explicit calls to Raise Exception .

The customer explained that they didn’t want to use /EHa because doing so significantly

impairs compiler optimizations and results in larger code size. But on the other hand, they do

want to catch the asynchronous (structured) exceptions.

So they had a fiendish plan.

Their fiendish plan is to install an unhandled exception filter which turns around and throws

the C++ exception. That way, a structured exception will result in a standard C++ exception,

but without the code generation penalties of the /EHa compiler option.

https://devblogs.microsoft.com/oldnewthing/20170728-00/?p=96706
https://msdn.microsoft.com/en-us/library/1deeycx5.aspx

2/7

// This clever function is an exception filter that converts
// asynchronous exceptions (structured exception handling)
// to synchronous exceptions (C++ exceptions).

LONG WINAPI CleverConversion(
 EXCEPTION_POINTERS* ExceptionInfo)
{

 auto record = ExceptionInfo->ExceptionRecord;

 std::string message;
 ... build a message based on the exception code and
 other parameters ...

 throw std::exception(message.c_str());
}

int sample_function(int* p)
{
 try {
 printf("About to dereference the pointer %p\n", p);
 return *p;
 } catch (std::exception& e) {
 Log(e.what());
 }
 return 0;
}

int __cdecl main(int argc, char **argv)
{
 SetUnhandledExceptionFilter(CleverConversion);

 return sample_function(nullptr);
}

Neat trick, huh? All the benefits of /EHa without the overhead!

Well, except that they found that it didn’t always work.

In the example above, the catch did catch the C++ exception, but if they took out the

printf , then the exception was not caught.

int sample_function(int* p)
{
 try {
 return *p;
 } catch (std::exception& e) {
 Log(e.what()); // exception not caught!
 }
 return 0;
}

3/7

The customer wanted to know why the second version didn’t work.

Actually the first version isn’t guaranteed to work either. It happens to work because the

compiler must consider the possibility that the printf function might throw a C++

exception. The printf function is not marked as noexcept , so the possibility is in play.

(Not that you’d expect it to be marked as such, seeing as it’s a C function, and C doesn’t have

exceptions.) When the access violation is raised as a structured exception, the Clever ‐

Conversion function turns it into a C++ exception and throws it, at which point the try

block catches it. But the try block is not there for the Clever Conversion exception. It’s

there to catch any exceptions coming out of printf , and you just happened to be lucky that

it caught your exception too.

In the second example, there is no call to printf , so the compiler says, “Well, nothing

inside this try block can throw a C++ exception, so I can optimize out the try/catch .”

You would also have observed this behavior if there were function calls inside the try

block, if the function calls were all to functions that were marked noexcept or if the

compiler could prove that they didn’t throw any C++ exceptions (say, because the function is

inlined).

This answers the question, but let’s try to look at the whole story.

1. We want to use /EHa .

2. But the documentation says that /EHa results in less efficient code. We want more

efficient code, not less.

3. Aha, we found this trick that lets us convert asynchronous exceptions to synchronous

ones. Now we get all the benefits of /EHa without any of the costs!

It looks like you found some free money on the ground, but is it really free money?

The customer seems to think that the /EHa option results in less efficient code simply

because the compiler team is a bunch of jerks and secretly hates you.

No, that’s not why the /EHa option results in less efficient code. The possibility that any

memory access or arithmetic operation could trigger an exception significantly impairs

optimization opportunities. It means that all variables must be stable at the point memory

accesses occur.

Consider the following code fragment:

4/7

class Reminder
{
public:
 Reminder(char* message) : m_message(message) { }
 ~Reminder() { std::cout << "don't forget to "
 << m_message << std::endl; }

 void UpdateMessage(char* message) { m_message = message; }

private:
 char* m_message;
};

void NonThrowingFunction() noexcept;
void DoSomethingElse(); // might throw

void sample_function()
{
 try {
 Reminder reminder("turn off the lights");
 if (NonThrowingFunction()) {
 reminder.UpdateMessage("feed the cat");
 }
 DoSomethingElse();
 } catch (std::exception& e) {
 Log(e.what());
 }
}

If compiling without /EHa , the compiler knows that the Non Throwing Function function

cannot throw a C++ exception, so it can delay the store of reminder. m_message to just

before the call to Do Something Else . In fact, it is like to do so because it avoids a redundant

store.

The pseudo-code for this function might look like this:

5/7

 allocate 4 bytes in local frame for reminder

l1:
 call NonThrowingFunction
 if result is zero
 load r1 = "turn off the lights"
 else
 load r1 = "feed the cat"
 endif
 store r1 to reminder.m_message
 call DoSomethingElse
l2:
 std::cout << "don't forget to "
 << r1 << std::endl;
l3:

 clean up local frame
 return

if exception occurs between l1 and l2
 std::cout << "don't forget to "
 << reminder.m_message << std::endl;
 fall through

if exception occurs between l2 and l3
 if exception is std::exception
 Log(e.what())
 goto l3
 else
 continue exception search
 endif

Notice that we optimized out a redundant store by delaying the initialization of reminder ,

and we enregistered reminder. m_message in the common code path. Delaying the

initialization of reminder is not an optimization available to /EHa because of the

possibility that Non Throwing Function might raise an asynchronous exception that gets

converted to a synchronous one:

6/7

 allocate 4 bytes in local frame for reminder

l0:
 // cannot delay initialization of reminder
 load r1 = "turn off the lights"
 store r1 to reminder.m_message

l1:
 call NonThrowingFunction
 if result is nonzero
 load r1 = "feed the cat"
 store r1 to reminder.m_message
 endif
 call DoSomethingElse
l2:
 std::cout << "don't forget to "
 << r1 << std::endl;
l3:

 clean up local frame
 return

if exception occurs between l1 and l2
 std::cout << "don't forget to "
 << reminder.m_message << std::endl;
 fall through

// and there is a new exception region
if exception occurs between l0 and l1, or between l2 and l3
 if exception is std::exception
 Log(e.what())
 goto l3
 else
 continue exception search
 endif

The extra code is necessary in order to ensure that the reminder variable is in a stable state

before calling Non Throwing Function . In general, if you turn on /EHa , the compiler must

ensure that every object which is accessed outside the try block (either explicitly in code or

implicitly via an unwind destructor) is stable in memory before performing any operation

that could result in an asynchronous exception, such as accessing memory.

This requirement that variables be stable in memory comes at a high cost, because it not only

forces redundant stores to memory, but it also prohibits various types of optimizations based

on out-of-order operations.

The Clever Conversion is basically a manual replication of what /EHa does, but lying to

the compiler and saying, “Um, yeah, don’t worry about asynchronous exceptions.”

7/7

Observe what happens if an asynchronous exception occurs inside Non Throwing Function

even though you compiled without the /EHa flag:

We destruct the reminder object, which means printing the m_message to std:: cout .

But the non- /EHa version did not ensure that reminder. m_message was stable. Indeed,

if an exception occurs inside Non Throwing Function , we will try to print

reminder. m_message anyway, even though it is an uninitialized variable.

Printing an uninitialized variable is probably not what the program intended.

So a more complete answer to the scenario is “Yes, it is technically possible to throw a C++

exception from a structured exception handler, but doing so requires that the program be

compiled with /EHa in order to avoid undefined behavior.”

And given that avoiding the /EHa flag was the whole purpose of the exercise, the answer to

the specific scenario is, “No, this doesn’t work. Your program will behave in undefined ways.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

