
1/4

August 11, 2017

The Alpha AXP, part 5: Conditional operations and
control flow

devblogs.microsoft.com/oldnewthing/20170811-00

Raymond Chen

The Alpha AXP has no flags register. Conditional operations are performed based on the

current value of a general-purpose register. The conditions available on the Alpha AXP are

the following:

EQ if zero

NE if not zero

GE if signed greater than or equal to zero

GT if signed greater than zero

LE if signed less than or equal to zero

LT if signed less than zero

LBC if low bit clear (if even)

LBS if low bit set (if odd)

In the discussion below, the abbreviation cc represents one of the above condition codes.

The conditional move instructions test a source register against a condition, and if the

condition is true, the destination register receives the second source.

 CMOVcc Ra, Rb/#b, Rc ; if Ra meets condition, then Rc = Rb/#b

You can also generate booleans from conditions. Note that the set of conditions here is not

the same as the standard set of conditions above!

https://devblogs.microsoft.com/oldnewthing/20170811-00/?p=96805

2/4

 CMPEQ Ra, Rb/#b, Rc ; Rc = (Ra == Rb/#b)
 CMPLT Ra, Rb/#b, Rc ; Rc = (Ra < Rb/#b) signed comparison
 CMPLE Ra, Rb/#b, Rc ; Rc = (Ra ≤ Rb/#b) signed comparison
 CMPULT Ra, Rb/#b, Rc ; Rc = (Ra < Rb/#b) unsigned comparison
 CMPULE Ra, Rb/#b, Rc ; Rc = (Ra ≤ Rb/#b) unsigned comparison

These comparison operators produce values of exactly 0 or 1, according to the result of the

comparison, and the comparison is against the full 64-bit register value.

Conditional jump instructions provide a condition and a register, as well as a jump target.

 Bcc Ra, destination

where cc is one of the condition codes above. The instruction tests the specified register

against the condition, and if true, control is transferred to the destination. The test is against

the full 64-bit register value, and the destination is encoded as a 21-bit value, in units of

instructions (4 bytes), which provides a reach of ±4MB.

Conditional branches backward are predicted taken. Conditional branches forward are

predicted not taken.

There are two types of unconditional branches. They are functionally the same but have

different consequences for the return address predictor.

 BR Ra, destination ; not expected to return
 BSR Ra, destination ; expected to return

These instructions store the address of the subsequent instruction (the return address) in the

Ra register and then transfer to the destination. The BR instruction does not push the

return address onto the return address predictor stack; the BSR instruction does.

The BR instruction is typically used with zero as the register to receive the return address,

since the value is almost always thrown away. (Recall that there is a special exemption for

branch instructions to the usual rule that instructions which write to zero can be optimized

away.)

The Win32 calling convention dictates that the ra register holds the return address on entry

to a function.

There are four indirect jump instructions which are all functionally equivalent but differ in

their effect on the return address predictor.

 JMP Ra, (Rb), hint16 ; not expected to return
 JSR Ra, (Rb), hint16 ; expected to return
 RET Ra, (Rb), hint16 ; end of function
 JSR_CO Ra, (Rb), hint16 ; coroutine

3/4

The Ra register receives the return address, typically zero in the case of JMP and RET , and

conventionally ra in the case of JSR . As you have probably guessed, JMP has no effect on

the return address predictor, JSR pushes the return address onto the predictor stack, and

RET pops the return address off of the predictor stack and predicts a transfer to the popped

value. The weird guy is JSR_CO which replaces the return address at the top of the predictor

stack with the new return address and predicts a transfer to the old value.

The official name of JSR_CO is JSR_ COROUTINE , but it doesn’t really matter because I

have never see JSR_CO in practice.

For the JMP and JSR instructions, the “hint” is a static prediction of the low 16 bits of the

value in Rb.

The RET and JSR_CO instructions don’t need a hint because they have their own return

address predictor. However, DEC recommends that the hint for a RET instruction be 1 for a

return from a procedure, and 0 otherwise. We’ll see more about this another day.

The Microsoft compiler doesn’t generate hints; it just sets the hint to zero. Profile-guided

optimization didn’t come to Visual C++ until after support for the Alpha AXP was dropped,

but if it were still in support, I’m assuming that profile-guided optimization would have filled

in the hint.

Non-virtual calls will look generally like this:

 ; Put the parameters in a0 through a5
 ; by whatever means appropriate.
 ; Excess parameters go on the stack.
 ; (Not shown here.)
 BIS zero, s1, a0 ; copied from another register
 LDL a1, 32(sp) ; loaded from memory
 ADDL zero, #1, a2 ; calculated in place

 BSR ra, destination ; call the other function
 ; result is in the v0 register

Virtual calls load the destination from the target’s vtable:

4/4

 ; Put the parameters in a0 through a5
 ; by whatever means appropriate.
 ; Excess parameters go on the stack.
 ; (Not shown here.)
 ; "this" goes into a0.
 BIS zero, s1, a0 ; copied from another register
 LDL a1, 32(sp) ; loaded from memory
 ADDL zero, #1, a2 ; calculated in place

 LDL t0, (a0) ; load vtable
 LDL t0, 8(t0) ; load function from vtable
 BSR ra, (t0) ; call the function pointer
 ; result is in the v0 register

Calls to exported functions are indirect through a global variable, which means we need to

get the address of that global.

 ; Put the parameters in a0 through a5
 ; by whatever means appropriate.
 ; Excess parameters go on the stack.
 ; (Not shown here.)
 BIS zero, s1, a0 ; copied from another register
 LDL a1, 32(sp) ; loaded from memory
 ADDL zero, #1, a2 ; calculated in place

 LDAH t0, xxxx(zero) ; 64KB block where global variable resides
 LDL t0, yyyy(t0) ; load the global variable
 BSR ra, (t0) ; call the function pointer
 ; result is in the v0 register

The above examples use the LDL instruction, which loads a register from memory. We’ll

learn more about memory access next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

