
1/2

August 15, 2017

The Alpha AXP, part 7: Memory access, loading
unaligned data

devblogs.microsoft.com/oldnewthing/20170815-00

Raymond Chen

Last time, we look ed at loading aligned memory. Now we’re going to look at unaligned data.

Let’s load an unaligned quad. The unaligned quad will span two aligned quads, so we will

need to load two quads, extract the pieces, and merge them together.

 LDQ_U t1, (t0) ; load lower container ; t1 = FEDC BA??
 LDQ_U t2, 7(t0) ; load upper quad ; t2 = ???? ??HG
 EXTQL t1, t0, t1 ; align lower portion ; t1 = 00FE DCBA
 EXTQH t2, t0, t2 ; align upper portion ; t2 = HG00 0000
 BIS t1, t2, t1 ; combine ; t1 = HGFE DCBA

In the case where the value happens to have been aligned by sheer luck, the operation still

works as intended. They do a bunch of redundant work (because they are dealing with a

misalignment that never happened), but you still get the correct result.

 LDQ_U t1, (t0) ; load lower container ; t1 = HGFE DCBA
 LDQ_U t2, 7(t0) ; load upper quad ; t2 = HGFE DCBA
 EXTQL t1, t0, t1 ; align lower portion ; t1 = HGFE DCBA
 EXTQH t2, t0, t2 ; align upper portion ; t2 = HGFE DCBA
 BIS t1, t2, t1 ; combine ; t1 = HGFE DCBA

A similar pattern exists for unaligned longs. Longs require an extra step to ensure the result

is in canonical form.

 LDQ_U t1, (t0) ; load lower container ; t1 = BA?? ????
 LDQ_U t2, 3(t0) ; load upper quad ; t2 = ???? ??DC
 EXTLL t1, t0, t1 ; align lower portion ; t1 = 0000 00BA
 EXTLH t2, t0, t2 ; align upper portion ; t2 = 0000 DC00
 BIS t1, t2, t1 ; combine ; t1 = 0000 DCBA
 ADDL t1, zero, t1; put in canonical form; t1 = ssss DCBA

And you can probably guess the pattern for unaligned words:

https://devblogs.microsoft.com/oldnewthing/20170815-00/?p=96816

2/2

 LDQ_U t1, (t0) ; load lower container ; t1 = A??? ????
 LDQ_U t2, 1(t0) ; load upper quad ; t2 = ???? ???B
 EXTWL t1, t0, t1 ; align lower portion ; t1 = 0000 000A
 EXTWH t2, t0, t2 ; align upper portion ; t2 = 0000 00B0
 BIS t1, t2, t1 ; combine ; t1 = 0000 00BA

If you need sign extension for the unaligned word, then you can use the trick we saw last

time.

 LDQ_U t1, (t0) ; load lower container ; t1 = A??? ????
 LDQ_U t2, 1(t0) ; load upper quad ; t2 = ???? ???B
 LDA t3, 2(t0) ; sneaky trick to extract at index 6+7
 EXTQL t1, t3, t1 ; align lower portion high ; t1 = 0A?? ????
 EXTQH t2, t3, t2 ; align upper portion high ; t2 = B000 0000
 BIS t1, t2, t1 ; combine ; t1 = BA?? ????
 SRA t1, #48, t1 ; shift right with sign ; t1 = ssss ssBA

Exercise: There’s an obvious continuation of this pattern for unaligned bytes, so why

doesn’t anybody use it?

That’s it for loading bytes, words, and unaligned data from memory. Next time, we’ll start

looking at writing them, which is a lot more complicated.

Bonus chatter: Later versions of the Alpha AXP processor added support for byte reads

and writes, as well as aligned word reads and writes. This makes code easier to write, but

probably makes the store-to-load forwarder logic much harder.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

