
1/5

August 16, 2017

The Alpha AXP, part 8: Memory access, storing bytes and
words and unaligned data

devblogs.microsoft.com/oldnewthing/20170816-00

Raymond Chen

Storing a byte and word requires a series of three operations: Read the original data, modify

the original data to incorporate the byte or word, then write the modified data back to

memory.

To assist with the modification are two groups of instructions known as insertion and

masking.

 INSBL Ra, Rb/#b, Rc ; Rc = (uint8_t)Ra << (Rb/#b * 8 % 64)

 INSWL Ra, Rb/#b, Rc ; Rc = (uint16_t)Ra << (Rb/#b * 8 % 64)

 INSLL Ra, Rb/#b, Rc ; Rc = (uint32_t)Ra << (Rb/#b * 8 % 64)

 INSQL Ra, Rb/#b, Rc ; Rc = (uint64_t)Ra << (Rb/#b * 8 % 64)

 INSWH Ra, Rb/#b, Rc ; Rc = (uint16_t)Ra >> ((64 - Rb/#b * 8) % 64)

 INSLH Ra, Rb/#b, Rc ; Rc = (uint32_t)Ra >> ((64 - Rb/#b * 8) % 64)

 INSQH Ra, Rb/#b, Rc ; Rc = (uint64_t)Ra >> ((64 - Rb/#b * 8) % 64)

These are the inverse of the extraction instructions. Instead of extracting data from a 128-bit

value, they move the data into position within a 128-bit value. For example, here’s a diagram

of inserting the long FGHI into a 128-bit value:

 high part low part

 --------- ---------

 0000 0FGH -- INSLH

 I000 0000 -- INSLL

The last piece of the puzzle is the masking instructions.

 MSKBL Ra, Rb/#b, Rc ; Rc = Ra & ~((uint8_t)~0 << (Rb/#b * 8 % 64))

 MSKWL Ra, Rb/#b, Rc ; Rc = Ra & ~((uint16_t)~0 << (Rb/#b * 8 % 64))

 MSKWL Ra, Rb/#b, Rc ; Rc = Ra & ~((uint32_t)~0 << (Rb/#b * 8 % 64))

 MSKWL Ra, Rb/#b, Rc ; Rc = Ra & ~((uint64_t)~0 << (Rb/#b * 8 % 64))

 MSKWH Ra, Rb/#b, Rc ; Rc = Ra & ~((uint16_t)~0 >> ((64 - Rb/#b * 8) % 64))

 MSKWH Ra, Rb/#b, Rc ; Rc = Ra & ~((uint32_t)~0 >> ((64 - Rb/#b * 8) % 64))

 MSKWH Ra, Rb/#b, Rc ; Rc = Ra & ~((uint64_t)~0 >> ((64 - Rb/#b * 8) % 64))

https://devblogs.microsoft.com/oldnewthing/20170816-00/?p=96825

2/5

These instructions zero out the bytes of a 128-bit value that are about to be replaced by an

insertion.

For example, here’s how the masking of a long would work:

 high part low part

 --------- ---------

 ABCD EFGH IJKL MNOP -- 16-byte value

 ^^^ ^ -- 4 bytes to be inserted here

 ABCD E000 -- MSKLH

 0JKL MNOP -- MSKLL

Putting the pieces together, we see that in order to replace a long in the middle of a 128-bit

value, you would use the insertion instructions to place the new value in the correct position,

the masking instructions to zero out the bits that used to be there, and then “or” the pieces

together.

 ; store an unaligned long in t1 to (t0)

 ; first read the 128-bit value currently in memory

 LDQ_U t2,3(t0) ; t2 = yyyy yyyD

 LDQ_U t5,(t0) ; t5 = CBAx xxxx

 ; build the values to insert

 INSLH t1,t0,t4 ; t4 = 0000 000d

 INSLL t1,t0,t3 ; t3 = cba0 0000

 ; mask out the values to be replaced

 MSKLH t2,t0,t2 ; t2 = yyyy yyy0

 MSKLL t5,t0,t5 ; t5 = 000x xxxx

 ; "or" the new values into place

 BIS t2,t4,t2 ; t2 = yyyy yyyd

 BIS t5,t3,t5 ; t5 = cbax xxxx

 ; and write the results back out

 STQ_U t2,3(t0) ; must store high then low

 STQ_U t5,(t0) ; in case there was no straddling

Extending this pattern to quads and words is left as an exercise.

Notice that in the case where t0 does not straddle two quads, we perform two reads from the

same location, and two writes to the same location. Let’s walk through what happens:

3/5

 ; first read the 128-bit value currently in memory

 ; (which is really the same 64-bit value twice)

 LDQ_U t2,3(t0) ; t2 = yyDC BAxx

 LDQ_U t5,(t0) ; t5 = yyDC BAxx

 ; build the values to insert

 INSLH t1,t0,t4 ; t4 = 00dc ba00

 INSLL t1,t0,t3 ; t3 = 0000 0000

 ; mask out the values to be replaced

 MSKLH t2,t0,t2 ; t2 = yy00 00xx

 MSKLL t5,t0,t5 ; t5 = yyDC BAxx

 ; "or" the new values into place

 BIS t2,t4,t2 ; t2 = yydc baxx

 BIS t5,t3,t5 ; t5 = yyDC BAxx

 ; and write the results back out

 STQ_U t2,3(t0) ; write same value back

 STQ_U t5,(t0) ; write updated value

This highlights some of the weird memory effects of the Alpha AXP. If another thread snuck

in and modified the memory at t0 & ~7, those changes would be reverted at the first STQ_U ,

and then the updated value gets written next. This means that the value changes from

yyyyDCBAxx to zzzzDCBAww , and then back to yyyyDCBAxx , and then finally to

yyyydcbaxx . The value changes, and then appears to change back to the old value, before

finally being updated to a new (sort-of) value.

We’ll learn more about the Alpha AXP memory model later.

In the case where you are writing a word and you know that it is aligned, then you can avoid

having to deal with the 128-bit value and operate within a 64-bit value (because an aligned

word will never straddle two quads).

 ; store an aligned word in t1 to (t0)

 ; first read the 64-bit value currently in memory

 LDQ_U t5,(t0) t5 = yyBA xxxx

 ; build the value to insert

 INSWL t1,t0,t3 t3 = 00ba 0000

 ; mask out the values to be replaced

 MSKWL t5,t0,t5 t5 = yy00 xxxx

 ; "or" the new values into place

 BIS t5,t3,t5 t5 = yyba xxxx

 ; and write the results back out

 STQ_U t5,(t0)

4/5

Okay, but what about bytes? Well, bytes can never be misaligned, so we always go through

the “known aligned” shortcut.

 ; store a byte in t1 to (t0)

 ; first read the 64-bit value currently in memory

 LDQ_U t5,(t0) t5 = yyyA xxxx

 ; build the value to insert

 INSBL t1,t0,t3 t3 = 000a 0000

 ; mask out the values to be replaced

 MSKBL t5,t0,t5 t5 = yyy0 xxxx

 ; "or" the new values into place

 BIS t5,t3,t5 t5 = yyya xxxx

 ; and write the results back out

 STQ_U t5,(t0)

Dealing with unaligned memory on the Alpha AXP is very annoying. Notice that updates to

words and bytes, even aligned words, is not atomic. We read the entire quad from memory,

perform some register calculations, and then write the entire quad back out. If somebody

made a change to another byte within the quad, we will wipe out that change when we

complete our word or byte update.

Next time, we’ll look at atomic memory operations.

Bonus chatter: There is one more pair of instructions which operate on the bytes within a

register: ZAP and ZAPNOT .

 ZAP Ra, Rb/#b, Rc ; Rc = Ra after zeroing the bytes selected by Rb/#b

 ZAPNOT Ra, Rb/#b, Rc ; Rc = Ra after zeroing the bytes selected by ~Rb/#b

The ZAP and ZAPNOT instructions treat the low-order 8 bits of the second parameter as

references to the corresponding bytes of the Ra register: Bit n of Rb/#b corresponds to bits N

× 8 through N × 8 + 7. The ZAP instruction sets the byte to zero if the corresponding bit is

set; the ZAPNOT instruction sets the byte to zero if the corresponding bit is clear. The other

56 bits of the second parameter are ignored.

For example, ZAP v0, #128, v0 clears the top byte of v0, and ZAPNOT v0, #128, v0

clears all but the top byte of v0. (For some reason, I had trouble remembering which way is

which. My trick was to pretend that the ZAPNOT instruction is called KEEP .)

As a special case, these instructions provide a handy way to zero-extend a register.

 ZAPNOT Ra, #1, Rc ; zero-extend byte from Ra to Rc

 ZAPNOT Ra, #3, Rc ; zero-extend word from Ra to Rc

 ZAPNOT Ra, #15, Rc ; zero-extend long from Ra to Rc

5/5

Note that in the last case, zero-extending a negative long will result in a 32-bit value in non-

canonical form. But you hopefully were expecting that; if you want to sign-extend the value

(in order to ensure a value in canonical form), you would have done ADDL Ra, #0, Rc .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

