
1/4

August 17, 2017

The Alpha AXP, part 9: The memory model and atomic
memory operations

devblogs.microsoft.com/oldnewthing/20170817-00

Raymond Chen

The Alpha AXP has a notoriously weak memory model. When a processor writes to memory,

the result becomes visible to other processors eventually, but there are very few constraints

beyond that.

For example, writes can become visible out of order. One processor writes a value to a

location, and then writes a value to another location, and another processor can observe the

second write without the first. Similarly, reads can complete out of order. One processor

reads a value from a location, then reads from another location, and the result could be that

the second read happens before the first.¹

Assume that memory locations x and y are both initially zero. The following sequence of

operations is valid.

Processor 1 Processor 2

write 1 to x read y yields 1

MB (memory barrier)

write 1 to y read x yields 0

The memory barrier instruction MB instructs the processor to make all previous loads and

stores complete to memory before starting any new loads and stores. However, it doesn’t

force other processors to do anything; other processors can still complete their memory

operations out of order, and that’s what happened in the above example.

Similarly, the following sequence is also legal:

Processor 1 Processor 2

write 1 to x read y yields 1

https://devblogs.microsoft.com/oldnewthing/20170817-00/?p=96835

2/4

MB (memory barrier)

write 1 to y read x yields 0

This is also legal because the memory barrier on processor 1 ensures that the value of x gets

updated before the value of y, but it doesn’t prevent processor 2 from performing the reads

out of order.

In order to prevent x and y from appearing to be updated out of order, both sides need to

issue memory barriers. Processor 1 needs a memory barrier to ensure that the write to x

happens before the write to y, and processor 2 needs a memory barrier to ensure that the

read from y happens before the read from x.

Okay, onward to atomic operations.

Performing atomic operations on memory requires the help of two new pairs of instructions:

 LDL_L Ra, disp16(Rb) ; load locked
 LDQ_L Ra, disp16(Rb)

 STL_C Ra, disp16(Rb) ; store conditional
 STQ_C Ra, disp16(Rb)

The load locked instruction performs a traditional read from memory, but also sets the

lock_flag and memorizes the physical address in phys_locked. The processor monitors for

any changes to that physical address from any processor, and if a change is detected,² the

lock_flag is cleared.

The lock_flag is also cleared by a variety of other conditions, most notably when the

processor returns from kernel mode back to user mode. This means that any hardware

interrupt or trap (such as a page fault, or executing an emulated instruction) will clear the

lock_flag. It is recommended that operating systems allow at least 40 instructions to execute

between timer interrupts.

You can later do a store conditional operation which will store a value to a memory address,

provided the lock_flag is still set. If so, then the source register is set to 1. If not, then the

source register is set to 0 and the memory is left unmodified. Regardless of the result, the

lock_flag is cleared.

A typical atomic increment looks like this:

3/4

retry:
 LDL_L t1, (t0) ; load locked
 ADDL t1, #1, t1 ; increment value
 STL_C t1, (t0) ; store conditional
 ; t1 = 1 if store was successful
 BEQ t1, failed ; jump if store failed
 ... continue execution ...

failed:
 BR zero, retry ; try again

In the case where the store failed, we jump forward, and then back. Recall that conditional

jumps backward are predicted taken, and conditional jumps forward are predicted not taken.

If we had simply jumped backward on failure, then the processor would have a branch

prediction miss in the common case that there is no contention.

Note that the above sequence does not impose any memory ordering. In practice, you will see

a MB before and/or after the atomic sequence in order to enforce acquire and/or release

semantics.

There are a number of practical rules regarding the LDx_L and STx_C instructions. The

most important ones are these:

The STx_C should be to the same address as the most recently preceding LDx_L .

This isn’t a problem in practice because storing back to the location of the previous load

is the intended use of the instructions.³

The processor may lose track of your LDx_L if you perform any memory access other

than a matching STx_C , or if you perform a branch instruction, or if you trigger a trap

(such as executing an emulated instruction), or if you execute more than 20

instructions after the LDx_L .

Although each STx_C should be preceded by a matching LDx_C , it is legal to perform a

LDx_L with no matching STx_C . This can happen with conditional interlocked operations,

where you discover after the LDx_L that the condition is not satisfied and you abandon the

interlocked operation.

The second rule says basically that the state created by the LDx_L instruction is ephemeral.

After performing the LDx_L instruction, do as little work as possible to determine what

value you want to store, and then store it right away. You are not allowed to take any

branches, but CMOVcc is okay.

The requirement that you get around to the STx_C within 20 instructions is a consequence

of the requirement on operating systems that they allow 40 instructions to execute between

timer interrupts.

Next time, we’ll do a little exercise based on what we’ve learned so far.

4/4

¹ Mind you, out-of-order reads are pretty common on all architectures. Store-to-load

forwarding means that a speculated read operation to speculatively-written memory can

complete before a read operation that occurred notionally earlier in the instruction stream.

However, as Fabian Giesen notes, the x86 has extra logic to avoid getting caught doing so!

² The architecture permits implementations to be a little sloppy with the change detection. In

particular, any modification within 128 bytes of the locked address is permitted to clear the

lock_flag. This means that targets of atomic operations should be at least 128 bytes apart in

order to minimize the likelihood of false positives.

³ There are complicated rules about what happens if you violate this guideline (including

some parts which are left implementation-defined), but they are largely irrelevant because

you should just follow the guideline already.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20170815-00/?p=96816#comment-1306565
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

