
1/3

August 18, 2017

The Alpha AXP, part 10: Atomic updates to byte and word
memory units

devblogs.microsoft.com/oldnewthing/20170818-00

Raymond Chen

Today we’re going to do a little exercise based on what we’ve learned so far. We learned how

to perform byte and word loads and stores to memory. And we also learned how to perform

atomic memory operations on longs and quads. But how about atomic memory operations on

bytes and words?

We will have to put together what we’ve learned: Combine the byte and word access patterns

with the atomic memory update pattern.

To recap: The sequence for reading an aligned word in memory goes like this:

 LDQ_U t1, (t0)
 EXTWL t1, t0, t1

The sequence for writing an aligned word in memory goes like this:

 LDQ_U t5, (t0) ; t5 = yyBA xxxx
 INSWL t1, t0, t3 ; t3 = 00ba 0000
 MSKWL t5, t0, t5 ; t5 = yy00 xxxx
 BIS t5, t3, t5 ; t5 = yyba xxxx
 STQ_U t5, (t0)

 ; Byte sequence is the same, except you use INSBL and MSKBL

And the sequence for an atomic quad update goes like this:

retry:
 LDQ_L t1, (t0) ; load locked
 ... calculate new value of t1 based on old value ...
 STQ_C t1, (t0) ; store conditional
 ; t1 = 1 if store was successful
 BEQ t1, failed ; jump if store failed
 ... continue execution ...

failed:
 BR zero, retry ; try again

https://devblogs.microsoft.com/oldnewthing/20170818-00/?p=96845
https://blogs.msdn.microsoft.com/oldnewthing/20170815-00/?p=96816
https://blogs.msdn.microsoft.com/oldnewthing/20170816-00/?p=96825

2/3

What we need to do is insert the byte or word extraction, calculation, and insertion code

where it says “calculate new value of t1 based on old value”. The trick is that there is no

LDQ_LU instruction. You can read for unaligned or you can read locked, but you can’t read

for unaligned locked.

Fortunately, this is easy to work around: We emulate the behavior of LDQ_U in software.

Recall that LDQ_U is the same as LDQ except that it ignores the bottom 3 bits of the

address. So let’s mask out the bottom 3 bits of the address.

 ; atomically increment the word at the aligned address t0
 BIC t3, #3, t0 ; force-align t0 to t3
retry:
 LDQ_L t1, (t3) ; load locked
 ... calculate new value of t1 based on old value ...
 STQ_C t1, (t3) ; store conditional
 ; t1 = 1 if store was successful
 BEQ t1, failed ; jump if store failed
 ... continue execution ...

failed:
 BR zero, retry ; try again

Okay, we’ve successfully emulated the LDQ_LU and STQ_LU instructions. Now to do the

extraction, calculation, and insertion:

 ; atomically increment the word at the aligned address t0
 BIC t3, #3, t0 ; force-align t0 to t3
retry:
 LDQ_L t1, (t3) ; load locked
 ; t1 = yyBA xxxx

 ; Extract
 EXTWL t1, t3, t2 ; t2 = 0000 00BA (the word value)

 ; Calculate
 ADDL t2, #1, t2 ; increment t2

 ; Insert
 INSWL t2, t0, t2 ; t2 = 00ba 0000
 MSKWL t1, t0, t1 ; t1 = yy00 xxxx
 BIS t1, t2, t1 ; t1 = yyba xxxx

 STQ_C t1, (t3) ; store conditional
 ; t1 = 1 if store was successful
 BEQ t1, failed ; jump if store failed
 ... continue execution ...

failed:
 BR zero, retry ; try again

3/3

Fortunately, our extraction, calculation, and insertion could be performed in under 20

instructions with no additional memory access, and no use of potentially-emulated

instructions, so it all fits between the LDQ_L and STQ_C .

Exercise: What could we do if our calculation required additional memory access or

required more than 20 instructions?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

