
1/2

August 21, 2017

The Alpha AXP, part 11: Processor faults
devblogs.microsoft.com/oldnewthing/20170821-00

Raymond Chen

There are three types of faults on the Alpha AXP:

Software faults

Hardware faults

Arithmetic faults

Software faults are those triggered by explicit instructions, such as CALL_PAL . These are

calls that trap into the kernel and are used as the Alpha AXP version of syscall . Software

faults are raised synchronously, and execution does not proceed past a software fault.

Consequently, they are restartable.

Hardware faults are those triggered by things like page faults, hardware interrupts, or

software emulation. Hardware faults are not necessarily raised synchronously; execution can

proceed past a hardware fault before the fault is generated, but the fault is nevertheless

restartable. Even though instructions past the faulting instruction may have already

executed, they can safely be executed again.

Arithmetic faults are tricky.

The ADDx , SUBx and MULx instructions can take a /V suffix to indicate that the

instruction should raise a processor trap if a signed integer overflow occurs.¹ There is a

similar suffix that can be applied to floating point operations to trigger an arithmetic fault if

something goes wrong in the floating point calculation.

The catch is that the trap is not required to be raised at the point of the operation. The

processor is permitted to delay the overflow trap indefinitely, or until you do this:

 TRAPB

The trap barrier instruction tells the processor to raise any overflow traps that are still

pending. The previous arithmetic operations need not run to completion; they only need to

run far enough to confirm that no overflow has occurred. The processor is allowed to execute

https://devblogs.microsoft.com/oldnewthing/20170821-00/?p=96855

2/2

past the TRAPB instruction, as long as it can do so without violating the constraints of the

TRAPB instruction.

In practice, you don’t see the /V suffix because C-like programming languages don’t raise

overflow exceptions. They just define integer overflows to wrap, or leave the behavior

undefined.

You usually see TRAPB instructions at the start and end of a function, and whenever code

enters or exits a __try block. Basically, it happens any time there is a change to how

exceptions are dispatched and unwound.

The fact that overflow traps can occur long after the operation that caused the overflow

means that overflow traps are in general not recoverable, because you don’t know which

register contains the overflowed value. (Indeed, the overflowed value may not even be in a

register any more.) If you want your overflow traps to be recoverable, you need to put the

TRAPB immediately after the instruction that potentially creates the overflow condition.

Okay, so that’s overflow. But what about carry? We’ll look at that next time.

¹ The presence of overflow detection means that the L versions of the instructions are not

quite the same as “Perform the Q operation, and then sign-extend the low-order 32 bits of

the result.” The numeric result is the same, but the overflow conditions are different.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

