
1/2

August 22, 2017

The Alpha AXP: Part 12: How you detect carry on a
processor with no carry?

devblogs.microsoft.com/oldnewthing/20170822-00

Raymond Chen

The Alpha AXP has no corresponding trap variant for arithmetic carry. So how would you

detect carry?¹

Answer: The same way you detect carry in C, or pretty much any other programming

language that doesn’t support carry.

To detect carry during addition, you check whether the sum is less than either addend. If the

sum is less than one addend, then it will also be less than the other addend, so use whichever

addend is most convenient.

 ; Rc = Ra + Rb, with Rd receiving carry
 ; Assumes Rc is not the same as Ra
 ADDx Ra, Rb, Rc ; Rc = Ra + Rb
 CMPULT Ra, Rc, Rd ; Rd = carry

 ; Rc = Ra + Rb, with Rd receiving carry
 ; Assumes Rc is not the same as Rb
 ADDx Ra, Rb, Rc ; Rc = Ra + Rb
 CMPULT Rb, Rc, Rd ; Rd = carry

 ; Rc = Rc + Rc, with Rd receiving carry
 ; Assumes Rd is distinct from Rc
 BIS Rd, Rc, Rc ; Rd = Rc
 ADDx Rc, Rc, Rc ; Rc = Rc + Rc
 CMPULT Rd, Rc, Rd ; Rd = carry

The last case is where the output overwrites both inputs, so we have to stash one of the inputs

in Rd so we can compare it to the result afterwards.

To detect borrow during subtraction, you check whether the subtrahend is greater than the

minuend.

https://devblogs.microsoft.com/oldnewthing/20170822-00/?p=96865

2/2

 ; Rc = Ra - Rb, with Rd receiving borrow
 ; Assumes Rd is distinct from both inputs
 CMPULT Ra, Rb, Rd ; Rd = borrow
 SUBx Ra, Rb, Rc ; Rc = Ra - Rb

To detect carry during multiplication, you capture the upper bits of the extended result.

 ; Rc = Ra *U Rb, with Rd receiving carry; 32-bit multiply
 ZAPNOT Ra, #15, Ra ; zero-extend Ra from 32 to 64 bits
 ZAPNOT Rb, #15, Rb ; zero-extend Rb from 32 to 64 bits
 MULQ Ra, Rb, Rc ; Rc = Ra *U Rb (64-bit multiply)
 SRA Rc, #32, Rd ; Rd = excess to carry forward
 ADDL Rc, zero, Rc ; Convert Rc to canonical form

 ; Rc = Ra *U Rb, with Rd receiving carry; 64-bit multiply
 ; Assumes Rd is distinct from both inputs
 UMULH Ra, Rb, Rd ; Rd = excess to carry forward
 MULQ Ra, Rb, Rc ; Rc = Ra *U Rb (64-bit multiply)

In the subtraction and multiplication sequences above, you can elide the final instruction if

Rd is identical to Rc. (In other words, if you care only about the carry and not the arithmetic

result.)

Exercise: Why did I sometimes calculate Rd early and sometimes late?

Exercise 2: Why didn’t I have to convert Rd to canonical form at the end of the 32-bit

multiply?

¹ The Itanium processor also doesn’t have a flags register, but nobody seemed to be upset

that it didn’t provide a way to detect arithmetic carry or overflow.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

