
1/3

August 28, 2017

The Alpha AXP, part 15: Variadic functions
devblogs.microsoft.com/oldnewthing/20170828-00

Raymond Chen

As noted in the initial plunge, the first six integer parameters are passed in registers, and the

first six floating point parameters are passed in a different set of registers. So how does the

callee known at function entry which registers to spill, and in what order?¹

Answer: It doesn’t. So it just spills everything.

First, a detail on the calling convention: The first six parameters are passed in registers, and

if you pass a parameter in an integer register, then the corresponding floating point register

is unused, and vice versa. In other words:

The first parameter is passed in either a0 or f16.

The second parameter is passed in either a1 or f17.

…

The sixth parameter is passed in either a5 or f21.

On entry to a variadic function, the function spills all the integer parameter registers onto the

stack first, and then spills the floating point parameter registers onto the stack next. The

result is a stack that looks like this:

⋮

param 10

param 9

param 8

param 7 ← stack pointer on function entry

integer param 6 (a5)

integer param 5 (a4)

integer param 4 (a3)

https://devblogs.microsoft.com/oldnewthing/20170828-00/?p=96895
https://blogs.msdn.microsoft.com/oldnewthing/20170807-00/?p=96766
https://blogs.msdn.microsoft.com/oldnewthing/20170807-00/?p=96766#comment-1305835

2/3

integer param 3 (a2)

integer param 2 (a1)

integer param 1 (a0)

floating point param 6 (f21)

floating point param 5 (f20)

floating point param 4 (f19)

floating point param 3 (f18)

floating point param 2 (f17)

floating point param 1 (f16) ← stack pointer after spilling

local variable

local variable

local variable

local variable ← stack pointer after prologue complete

The va_list type is a structure:

typedef struct __va_list

{

 char* base;

 size_t offset;

} va_list;

The va_start macro initializes base to point to “integer param 1” and offset to 8 ×

the number of non-variadic parameters.

If you invoke the va_arg macro with a non-floating point type as the second parameter,

then it operates in an unsurprising manner: It retrieves the data from base + offset and

then increases the offset by the size of the data (rounded up to the nearest multiple of

eight).

But invoking the va_arg macro with a floating point type as the second parameter is

weirder: If the offset is less than 48, then it retrieves the data from base + offset -

48 , resulting in a “reach-back” into the parallel array of spilled floating point registers. If the

offset is greater than or equal to 48, then it retrieves the data from base + offset as

usual. Regardless of where the data is read from, the offset increases by the size of the

data (rounded up to the nearest multiple of eight).

3/3

The implementations of the va_start and va_arg macros take advantage of special-

purpose compiler intrinsics that did a lot of the magic.

There are a few optimizations possible here. For one thing, the compiler doesn’t need to spill

non-variadic parameters, though it does need to reserve space for them on the stack so that

the va_arg macro continues to work.² Furthermore, if the compiler can observe that

va_arg is never invoked with a floating point type, then it doesn’t need to spill the floating

point registers at all. (Similarly, if va_arg is always invoked with floating point types, then

the integer registers don’t need to be spilled.)

I don’t remember whether the Microsoft compiler actually implemented any of these

optimizations.

¹ It turns out that this question is not Alpha-specific. It applies to any architecture that

passes variadic parameters differently depending on their type.

² If the compiler can observe that va_arg is never invoked with a floating point type, then it

doesn’t even need to reserve space for the non-variadic parameters. It can just point the

base at where the first integer parameter would have been, even though it now points into

the local variables. Those local variables will never be read as parameters because the initial

offset skips over them.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

