
1/2

September 25, 2017

What happens if I wake a condition variable when nobody
is waiting for it? Is the wake saved for the next thread
that waits?

devblogs.microsoft.com/oldnewthing/20170925-00

Raymond Chen

Suppose you call WakeXxxConditionVariable to wake a CONDITION_ VARIABLE , but

nobody is waiting on the condition variable. What happens? In particular, is the wake saved

for the next thread that waits, so the next call to SleepConditionVariableXxx returns

immediately instead of waiting?

The answer is, “It shouldn’t matter.”

The intended use pattern for a condition variable is to do the following:

1. Enter a lock.

2. Check a condition.

3. If the condition is false, then call SleepConditionVariableXxx and then go to step 2.

4. Perform an operation.

5. Release the lock.

And the code that establishes the condition (or at least changes the condition so it might be

true for at least one waiter) calls WakeXxxConditionVariable .

If you follow this pattern, then it doesn’t matter whether a call to WakeXxxCondition‐

Variable is remembered when there are no waiting threads. According to the intended use

pattern, a thread is expected to check the condition first, and only if the condition is false

should the thread call SleepConditionVariableXxx . Whether the wake is remember or

not is irrelevant because the waiting thread never actually waits!

In other words, if you are counting on an unnecessary wake being saved and waking up a

future sleep, then that means that you went to sleep before checking the condition. (Because

if you had checked the condition, you would have avoided the sleep.) You’re holding it wrong.

https://devblogs.microsoft.com/oldnewthing/20170925-00/?p=97075
https://msdn.microsoft.com/library/windows/desktop/ms687080(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/ms682052(v=vs.85).aspx
http://youreholdingitwrong.org/

2/2

Conversely, if you didn’t expect the unnecessary wake to be remembered, but you got one

anyway, well, that’s also permitted because condition variables are explicitly documented as

subject to spurious wakes. Again, if you follow the intended use pattern, spurious wakes

aren’t a problem (aside from performance) because the recommended pattern is to re-check

the condition after the sleep wakes. If the wake were spurious, the check would fail, and you

would go back to sleep.

In summary, if you wake a condition variable when nobody is waiting for it, it is unspecified

whether the wake is saved for the next thread that waits, and that’s okay, because if you

follow the intended use pattern, it doesn’t matter.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

