
1/2

September 29, 2017

Why does my thread handle suddenly go bad? All I did
was wait on it!

devblogs.microsoft.com/oldnewthing/20170929-00

Raymond Chen

A customer reported that they had a very strange bug, where waiting on a thread handle

causes it to become invalid. Here’s a code fragment:

DWORD waitResult = WaitForSingleObject(hThread, INFINITE);

assert(waitResult == WAIT_OBJECT_0); // assertion passes

DoSomeCleanup();

CloseHandle(hThread);

That final call to CloseHandle results in a STATUS_ INVALID_ HANDLE exception when

run in the debugger. How did the handle become invalid? We sucessfully waited on it just a

few lines earlier.

There wasn’t enough information to go on, so we had to make some guesses. Perhaps

hThread was already closed, and it got recycled to refer to some unrelated kernel object,

and it’s that unrelated object that you’re waiting on when you call WaitForSingleObject .

And then when you do some cleanup, that causes the unrelated handle to be closed, which

means that the numeric value of hThread now refers to an invalid handle.

The customer did some investigation and discovered that they were obtaining the thread

handle from the _beginthread function. The handle returned by the _beginthread

function is explicitly documented as being closed by the _endthread function.

_endthread automatically closes the thread handle, whereas _endthreadex does not.
Therefore, when you use _beginthread and _endthread , do not explicitly close the
thread handle by calling the Win32 CloseHandle API. This behavior differs from the Win32
ExitThread API.

Basically, the deal is that the _beginthread function returns a handle to the created

thread, but does not give you ownership of the handle. Ownership of that handle remains

with the thread itself, and the thread automatically closes the handle when it exits. (Not

mentioned in the MSDN documentation for _beginthread is that the runtime

https://devblogs.microsoft.com/oldnewthing/20170929-00/?p=97115
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/beginthread-beginthreadex

2/2

automatically calls _endthread if the thread function returns normally. This detail is

mentioned in the documentation for _endthread, which is probably a better place for it

anyway.)

Basically, the handle returned by the _beginthread function is useless. You don’t know

how long it’s valid, and it might even be invalid by the time you even receive it!

Switching to _endthreadex fixed the problem.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/endthread-endthreadex
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

