
1/2

November 7, 2017

Was there a problem with Windows 95-era programs
relying on undocumented information disclosure stuff?

devblogs.microsoft.com/oldnewthing/20171107-00

Raymond Chen

Tihiy noted that back in the Windows 95 days, there was a lot of undocumented stuff lying

around in places that are formally undefined. For example, the return value of Is Window is

formally zero or nonzero, but it turns out that on Windows 95, the nonzero value actually was

a pointer to an internal data structure. I remember another case where a function returned a

value in EAX , but it so happened that the ECX register contained a pointer to some

interesting data structure.

These bonus undocumented values were not intentional. In the case of Is Window , it was an

optimization: Since the only meaningful values are zero and nonzero, and a null pointer is

zero and a non-null pointer is nonzero, it was a clever trick to just return the pointer cast to

an integer. In the case of the function that returned a value in ECX , that was completely

unintentional: It was just a value that the compiler left in the ECX register by happenstance.

Did these undocumented but potentially useful values cause trouble?

Surprisingly not.

I’m not sure why this was not generally a problem. My guess is that software developers kept

one eye on that other version of Windows, Windows NT. Relying on undocumented values

wouldn’t work on Windows NT, so the developers had to come up with something that would

work on both.

I’m sure there were plenty of software developers who simply never tested on Windows NT or

didn’t consider Windows NT to be part of their customer base. But the number of those who

exploited undocumented return values was small enough that I barely remember them.

Bonus chatter: I do remember one customer some time around Windows 8 who asked why

the contents of the EBX register no longer contained a copy of the executable’s instance

handle when the executable entry point as called. We were kind of baffled by this question,

because the contents of the EBX register at the executable entry point are formally

undefined. Indeed, the code never explicitly sets EBX to anything. The value in EBX is

https://devblogs.microsoft.com/oldnewthing/20171107-00/?p=97356
https://blogs.msdn.microsoft.com/oldnewthing/20100720-01/?p=13383#comment-848523

2/2

whatever the compiler happened to be using the EBX register for. There was no intentional

effort to put a particular value into the EBX register. It just so happened that the instance

handle was something the compiler decided to put into the EBX register for 19 years, and

then in year 20, it decided to put something else there.

Bonus bonus chatter: You also shouldn’t sniff the return address to determine how your

module was loaded. That’s not part of the API contract either.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/#comment-1308415
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

