
1/2

November 13, 2017

On memory allocations larger than 64KB on 16-bit
Windows

devblogs.microsoft.com/oldnewthing/20171113-00

Raymond Chen

Allocating memory blocks larger than 64KB was tricky in 16-bit Windows because the nature

of 16-bit segment:offset addressing meant that you could access the memory only 64KB at a

time. Global memory allocations returned you a segment (or selector, if running protected

mode Windows), and the memory started at offset zero in that selector. Things got

complicated once you needed to read the byte that comes after offset 0xFFFF .

For the purpose of discussion, let’s say that the value returned from Global Alloc was

0x1234 . The first 64KB of the allocated memory are accessible as 1234:0000 through

1234:FFFF .

In real mode, linear addresses are calculated by taking the segment number, multiplying by

16, and adding the offset. This means that 1234:0000 refer to linear byte 0x12340 , and

1234:FFFF refer to linear byte 0x12340 + 0xFFFF = 0x2233F . The next linear byte is

0x22340 , which you could access as 2234:0000 .

Conclusion: When the offset wraps around, you add 0x1000 to the segment.

In standard mode, linear addresses are calculated by looking up the base address of the

selector in the descriptor table, and adding the offset. When Windows allocated a block larger

than 64KB, it allocated a block of consecutive selectors, so that the first selector pointed to

the first 64KB of the allocated memory, the second selector pointed to second 64KB of the

allocated memory, and so on.

Now, consecutive selectors do not have consecutive values, however. On the 80286, the

bottom three bits of the selector are used for other purposes, so the numeric difference

between consecutive selectors is actually 8. The first 64KB of the allocated memory are

accessible as 1234:0000 through 1234:FFFF , and the next byte after that is available as

123C:0000 .

https://devblogs.microsoft.com/oldnewthing/20171113-00/?p=97386
https://devblogs.microsoft.com/oldnewthing/?p=17933

2/2

This makes for a bit of trouble if you’re writing a program that needs to run in both real mode

and protected mode. When you reach the end of the first 64KB block, how much do you

increment the segment/selector by to reach the next 64KB block?

Enter the __AHINCR variable.

The __AHINCR variable is a variable exported from KERNEL . In real mode Windows, the

value is 0x1000 . In protected mode Windows, the value is 0x0008 . When your program

reaches the end of a 64KB block, it uses the __AHINCR value to decide how much to

increment the segment/selector by in order to reach the next 64KB block.

Most programmers never saw this variable. It was hidden inside the code generated by the

compiler.

With the introduction of enhanced mode Windows, the memory manager did a little more.

Enhanced mode Windows used the 80386, “Now with 32-bit registers!” This means that the

offset portion of a selector:offset address can be a 32-bit value.

The Windows memory manager assigned the selectors to the different 64KB chunks of data

in the same way that the standard mode memory manager did, but instead of setting the

selector limit to 0xFFFF , it set the selector limit to extend to the entire remainder of the

block. The first selector’s limit was the entire memory block. The second selector’s limit was

the memory block minus 64KB. The third selector’s limit was the memory block minus

128KB. And so on until all the selectors were exhausted.

This arrangement meant that if you could convince your compiler to do it (or if you wrote

code in assembly language directly), you could leave the selector alone and operate solely on

the offset portion.

Windows 95 took advantage of this. The languages team produced a special version of the

compiler that, with proper coaxing and appeasement, could be convinced to access memory

using 32-bit offsets from a 16-bit selector, provided you declared the selector and the pointer

in just the right way.

No lesson today. Just some reminiscing.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20170927-00/?p=97095#comment-1310625
https://technet.microsoft.com/en-us/library/2008.09.windowsconfidential.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

