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On StackOverflow, there’s a question about the most efficient way to compare two integers

and produce a result suitable for a comparison function, where a negative value means that

the first value is smaller than the second, a positive value means that the first value is greater

than the second, and zero means that they are equal.

There was much microbenchmarking of various options, ranging from the straightforward

int compare1(int a, int b) 
{ 
   if (a < b) return -1; 
   if (a > b) return 1; 
   return 0; 
} 

to the clever

int compare2(int a, int b) 
{ 
   return (a > b) - (a < b); 
} 

to the hybrid

int compare3(int a, int b) 
{ 
   return (a < b) ? -1 : (a > b); 
} 

to inline assembly

https://devblogs.microsoft.com/oldnewthing/20171117-00/?p=97416
https://stackoverflow.com/q/10996418/902497


2/10

int compare4(int a, int b) 
{ 
   __asm__ __volatile__ ( 
       "sub %1, %0 \n\t" 
       "jno 1f \n\t" 
       "cmc \n\t" 
       "rcr %0 \n\t" 
       "1: " 
   : "+r"(a) 
   : "r"(b) 
   : "cc"); 
   return a; 
} 

The benchmark pitted the comparison functions against each other by comparing random

pairs of numbers and adding up the results to prevent the code from being optimized out.

But here’s the thing: Adding up the results is completely unrealistic.

There are no meaningful semantics that could be applied to a sum of numbers for which only

the sign is significant. No program that uses a comparison function will add the results. The

only thing you can do with the result is compare it against zero and take one of three actions

based on the sign.

Adding up all the results means that you’re not using the function in a realistic way, which

means that your benchmark isn’t realistic.

Let’s try to fix that. Here’s my alternative test:
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// Looks for "key" in sorted range [first, last) using the 
// specified comparison function. Returns iterator to found item, 
// or last if not found. 

template<typename It, typename T, typename Comp> 
It binarySearch(It first, It last, const T& key, Comp compare) 
{ 
// invariant: if key exists, it is in the range [first, first+length) 
// This binary search avoids the integer overflow problem 
// by operating on lengths rather than ranges. 
auto length = last - first; 
while (length > 0) { 
 auto step = length / 2; 
 It it = first + step; 
 auto result = compare(*it, key); 
 if (result < 0) { 
  first = it + 1; 
  length -= step + 1; 
 } else if (result == 0) { 
  return it; 
 } else { 
  length = step; 
 } 
}
return last; 
} 

int main(int argc, char **argv) 
{ 
// initialize the array with sorted even numbers 
int a[8192]; 
for (int i = 0; i < 8192; i++) a[i] = i * 2; 

for (int iterations = 0; iterations < 1000; iterations++) { 
 int correct = 0; 
 for (int j = -1; j < 16383; j++) { 
  auto it = binarySearch(a, a+8192, j, COMPARE); 
  if (j < 0 || j > 16382 || j % 2) correct += it == a+8192; 
  else correct += it == a + (j / 2); 
 } 
 // if correct != 16384, then we have a bug somewhere 
 if (correct != 16384) return 1; 
}
return 0; 
} 

Let’s look at the code generation for the various comparison functions. I used gcc.godbolt.org

with x86-64 gcc 7.2 and optimization -O3 .

If we try compare1 , then the binary search looks like this:

https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://gcc.godbolt.org/


4/10

   ; on entry, esi is the value to search for 

   lea rdi, [rsp-120]          ; rdi = first 
   mov edx, 8192               ; edx = length 
   jmp .L9 
.L25:                           ; was greater than 
   mov rdx, rax                ; length = step 
   test rdx, rdx               ; while (length > 0) 
   jle .L19 
.L9: 
   mov rax, rdx                ; 
   sar rax, 1                  ; eax = step = length / 2 
   lea rcx, [rdi+rax*4]        ; it = first + step 

   ; result = compare(*it, key), and then test the result 
   cmp dword ptr [rcx], esi    ; compare(*it, key) 
   jl .L11                     ; if less than 
   jne .L25                    ; if not equal (therefore if greater than) 
   ... return value in rcx     ; if equal, answer is in rcx 

.L11:                           ; was less than 
   add rax, 1                  ; step + 1 
   lea rdi, [rcx+4]            ; first = it + 1 
   sub rdx, rax                ; length -= step + 1 
   test rdx, rdx               ; while (length > 0) 
   jg .L9 
.L19: 
   lea rcx, [rsp+32648]        ; rcx = last 
   ... return value in rcx 

Exercise: Why is rsp - 120  the start of the array?

Observe that despite using the lamest, least-optimized comparison function, we got the

comparison-and-test code that is much what we would have written if we had done it in

assembly language ourselves: We compare the two values, and then follow up with two

branches based on the same shared flags. The comparison is still there, but the calculation

and testing of the return value are gone.

In other words, not only was compare1  optimized down to one cmp  instruction, but it also

managed to delete instructions from the binarySearch  function too. It had a net cost of

negative instructions!

What happened here? How did the compiler manage to optimize out all our code and leave

us with the shortest possible assembly language equivalent?

Simple: First, the compiler did some constant propagation. After inlining the compare1

function, the compiler saw this:
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   int result; 
   if (*it < key) result = -1; 
   else if (*it > key) result = 1; 
   else result = 0; 
   if (result < 0) { 
     ... less than ... 
   } else if (result == 0) { 
     ... equal to ... 
   } else { 
     ... greater than ... 
   } 

The compiler realized that it already knew whether constants were greater than, less than, or

equal to zero, so it could remove the test against result  and jump straight to the answer:

   int result; 
   if (*it < key) { result = -1; goto less_than; } 
   else if (*it > key) { result = 1; goto greater_than; } 
   else { result = 0; goto equal_to; } 
   if (result < 0) { 
less_than: 
     ... less than ... 
   } else if (result == 0) { 
equal_to: 
     ... equal to ... 
   } else { 
greater_than: 
     ... greater than ... 
   } 

And then it saw that all of the tests against result  were unreachable code, so it deleted

them.

   int result; 
   if (*it < key) { result = -1; goto less_than; } 
   else if (*it > key) { result = 1; goto greater_than; } 
   else { result = 0; goto equal_to; } 

less_than: 
     ... less than ... 
     goto done; 

equal_to: 
     ... equal to ... 
     goto done; 

greater_than: 
     ... greater than ... 
done: 

That then left result  as a write-only variable, so it too could be deleted:
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   if (*it < key) { goto less_than; } 
   else if (*it > key) { goto greater_than; } 
   else { goto equal_to; } 

less_than: 
     ... less than ... 
     goto done; 

equal_to: 
     ... equal to ... 
     goto done; 

greater_than: 
     ... greater than ... 
done: 

Which is equivalent to the code we wanted all along:

   if (*it < key) { 
     ... less than ... 
   } else if (*it > key) { 
     ... greater than ... 
   } else { 
     ... equal to ... 
   } 

The last optimization is realizing that the test in the else if  could use the flags left over by

the if , so all that was left was the conditional jump.

Some very straightforward optimizations took our very unoptimized (but easy-to-analyze)

code and turned it into something much more efficient.

On the other hand, let’s look at what happens with, say, the second comparison function:
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   ; on entry, edi is the value to search for 

   lea r9, [rsp-120]           ; r9 = first 
   mov ecx, 8192               ; ecx = length 
   jmp .L9 
.L11:                           ; 
   test eax, eax               ; result == 0? 
   je .L10                     ; Y: found it 
                               ; was greater than 
   mov rcx, rdx                ; length = step 
   test rcx, rcx               ; while (length > 0) 
   jle .L19 
.L9: 
   mov rdx, rcx 
   xor eax, eax                ; return value of compare2 
   sar rdx, 1                  ; rdx = step = length / 2 
   lea r8, [r9+rdx*4]          ; it = first + step 

   ; result = compare(*it, key), and then test the result 
   mov esi, dword ptr [r8]     ; esi = *it 
   cmp esi, edi                ; compare *it with key 
   setl sil                    ; sil = 1 if less than 
   setg al                     ; al  = 1 if greater than 
                               ; eax = 1 if greater than 
   movzx esi, sil              ; esi = 1 if less than 
   sub eax, esi                ; result = (greater than) - (less than) 
   cmp eax, -1                 ; less than zero? 
   jne .L11                    ; N: Try zero or positive 

                               ; was less than 
   add rdx, 1                  ; step + 1 
   lea r9, [r8+4]              ; first = it + 1 
   sub rcx, rdx                ; length -= step + 1 
   test rcx, rcx               ; while (length > 0) 
   jg .L9 
.L19: 
   lea r8, [rsp+32648]         ; r8 = last 
.L10: 
   ... return value in r8 

The second comparison function compare2  uses the relational comparison operators to

generate exactly 0 or 1. This is a clever way of generating -1 , 0 , or +1 , but unfortunately,

that was not our goal in the grand scheme of things. It was merely a step toward that goal.

The way that compare2  calculates the result is too complicated for the optimizer to

understand, so it just does its best at calculating the formal return value from compare2

and testing its sign. (The compiler does realize that the only possible negative value is -1 ,

but that’s not enough insight to let it optimize the entire expression away.)

If we try compare3 , we get this:
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   ; on entry, esi is the value to search for 

   lea rdi, [rsp-120]          ; rdi = first 
   mov ecx, 8192               ; ecx = length 
   jmp .L12 
.L28:                           ; was greater than 
   mov rcx, rax                ; length = step 
.L12: 
   mov rax, rcx 
   sar rax, 1                  ; rax = step = length / 2 
   lea rdx, [rdi+rax*4]        ; it = first + step 

   ; result = compare(*it, key), and then test the result 
   cmp dword ptr [rdx], esi    ; compare(*it, key) 
   jl .L14                     ; if less than 
   jle .L13                    ; if less than or equal (therefore equal) 

   ; "length" is in eax now 
.L15:                           ; was greater than 
   test eax, eax               ; length == 0? 
   jg .L28                     ; N: continue looping 
   lea rdx, [rsp+32648]        ; rdx = last 
.L13: 
   ... return value in rdx 

.L14:                           ; was less than 
   add rax, 1                  ; step + 1 
   lea rdi, [rdx+4]            ; first = it + 1 
   sub rcx, rax                ; length -= step + 1 
   mov rax, rcx                ; rax = length 
   jmp .L15 

The compiler was able to understand this version of the comparison function: It observed

that if a < b , then the result of compare3  is always negative, so it jumped straight to the

less-than case. Otherwise, it observed that the result was zero if a  is not greater than b

and jumped straight to that case too. The compiler did have some room for improvement

with the placement of the basic blocks, since there is an unconditional jump in the inner loop,

but overall it did a pretty good job.

The last case is the inline assembly with compare4 . As you might expect, the compiler had

the most trouble with this.
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   ; on entry, edi is the value to search for 

   lea r8, [rsp-120]           ; r8 = first 
   mov ecx, 8192               ; ecx = length 
   jmp .L12 
.L14:                           ; zero or positive 
   je .L13                     ; zero - done 
                               ; was greater than 
   mov rcx, rdx                ; length = step 
   test rcx, rcx               ; while (length > 0) 
   jle .L22 
.L12: 
   mov rdx, rcx 
   sar rdx, 1                  ; rdx = step = length / 2 
   lea rsi, [r8+rdx*4]         ; it = first + step 

   ; result = compare(*it, key), and then test the result 
   mov eax, dword ptr [rsi]    ; eax = *it 
   sub eax, edi 
   jno 1f 
   cmc 
   rcr eax, 1 
1:
   test eax, eax               ; less than zero? 
   jne .L14                    ; N: Try zero or positive 

                               ; was less than 
   add rdx, 1                  ; step + 1 
   lea r8, [rsi+4]             ; first = it + 1 
   sub rcx, rdx                ; length -= step + 1 
   test rcx, rcx               ; while (length > 0) 
   jg .L12 
.L22: 
   lea rsi, [rsp+32648]        ; rsi = last 
.L13: 
   ... return value in rsi 

This is pretty much the same as compare2 : The compiler has no insight at all into the inline

assembly, so it just dumps it into the code like a black box, and then once control exits the

black box, it checks the sign in a fairly efficient way. But it had no real optimization

opportunities because you can’t really optimize inline assembly.

The conclusion of all this is that optimizing the instruction count in your finely-tuned

comparison function is a fun little exercise, but it doesn’t necessarily translate into real-world

improvements. In our case, we focused on optimizing the code that encodes the result of the

comparison without regard for how the caller is going to decode that result. The contract

between the two functions is that one function needs to package some result, and the other

function needs to unpack it. But we discovered that the more obtusely we wrote the code for

the packing side, the less likely the compiler would be able to see how to optimize out the
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entire hassle of packing and unpacking in the first place. In the specific case of comparison

functions, it means that you may want to return +1 , 0 , and -1  explicitly rather than

calculating those values in a fancy way, because it turns out compilers are really good at

optimizing “compare a constant with zero”.

You have to see how your attempted optimizations fit into the bigger picture because you

may have hyper-optimized one part of the solution to the point that it prevents deeper

optimizations in other parts of the solution.

Bonus chatter: If the comparison function is not inlined, then all of these optimization

opportunities disappear. But I personally wouldn’t worry about it too much, because if the

comparison function is not inlined, then the entire operation is going to be dominated by the

function call overhead: Setting up the registers for the call, making the call, returning from

the call, testing the result, and most importantly, the lost register optimization opportunities

not only because the compiler loses opportunities to enregister values across the call, but also

because the compiler has to protect against the possibility that the comparison function will

mutate global state and consequently create aliasing issues.

Raymond Chen
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