
1/4

November 23, 2017

Demonstrating what happens when a parent and child
window have different UI states

devblogs.microsoft.com/oldnewthing/20171123-00

Raymond Chen

Last time, we dug into the statement in the documentation that says, “When you change the

parent of a window, you should synchronize the UISTATE of both windows.” Today we’ll set

up a situation where the states are out of sync so we can play with it.

Start with the new scratch program and make these changes:

HWND g_hwndPotato;

LRESULT RootWindow::OnCreate()
{
g_hwndChild = CreateWindow(L"Button", L"&Reset",
 WS_CHILD | WS_VISIBLE | WS_TABSTOP | BS_PUSHBUTTON,
 0, 0, 100, 100, m_hwnd, (HMENU)1, g_hinst, 0);
if (!g_hwndPotato) {
 g_hwndPotato = CreateWindow(L"Button", L"&Potato",
 WS_CHILD | WS_VISIBLE | WS_TABSTOP | BS_PUSHBUTTON,
 0, 100, 100, 100, m_hwnd, (HMENU)2, g_hinst, 0);
 }
 return 0;
}

We define a global variable to hold the window that is the hot potato that will be passed from

one root window to another. When we create a root window, we give it a button called

“Reset”, and the first root window also gets the hot potato.

https://devblogs.microsoft.com/oldnewthing/20171123-00/?p=97455
https://blogs.msdn.microsoft.com/oldnewthing/20171122-00/?p=97445
https://blogs.msdn.microsoft.com/oldnewthing/20050422-08/?p=35813

2/4

LRESULT RootWindow::HandleMessage(
 UINT uMsg, WPARAM wParam, LPARAM lParam)
{
switch (uMsg) {
...
 case WM_COMMAND:
 switch (GET_WM_COMMAND_ID(wParam, lParam)) {
 case 1:
 switch (GET_WM_COMMAND_CMD(wParam, lParam)) {
 case BN_CLICKED:
 SendMessage(m_hwnd, WM_CHANGEUISTATE,
 MAKEWPARAM(UIS_SET, UISF_HIDEACCEL | UISF_HIDEFOCUS), 0);
 break;
 }
 break;
 }
 break;

 case WM_LBUTTONDOWN:
 if (GetParent(g_hwndPotato) != m_hwnd) {
 SetParent(g_hwndPotato, m_hwnd);
 }
 break;

 // delete WM_SIZE handler
 // case WM_SIZE:
 // if (m_hwndChild) {
 // SetWindowPos(m_hwndChild, NULL, 0, 0,
 // GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam),
 // SWP_NOZORDER | SWP_NOACTIVATE);
 // }
 // return 0;

 ...
}
return __super::HandleMessage(uMsg, wParam, lParam);
}

If the user clicks the Reset button, we hide keyboard accelerators and the focus rectangle.

This lets us tinker with the UI state interactively: Click the button to hide accelerators and

tap the Alt key to bring them back.

If we click in an empty space in the window, then we try to steal the potato window

(assuming it’s not already ours).

3/4

int PASCAL
WinMain(HINSTANCE hinst, HINSTANCE, LPSTR, int nShowCmd)
{
g_hinst = hinst;

if (SUCCEEDED(CoInitialize(NULL))) {
 InitCommonControls();

 RootWindow *prw1 = RootWindow::Create();
 RootWindow *prw2 = RootWindow::Create();
 if (prw1 && prw2) {
 ShowWindow(prw1->GetHWND(), nShowCmd);
 ShowWindow(prw2->GetHWND(), nShowCmd);
 MSG msg;
 while (GetMessage(&msg, NULL, 0, 0)) {
 if (!IsDialogMessage(prw1->GetHWND(), &msg) &&
 !IsDialogMessage(prw2->GetHWND(), &msg)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 }
 CoUninitialize();
}
return 0;
}

Finally, our main program creates two top-level windows and lets you play with them.

Observe that we do nothing to synchronize the UI states of the parent window with the

potato.

Run this program and click Reset in the window that doesn’t have the Potato button. This

hides the keyboard accelerator indicator. Now click in the client area of the window without

the Potato button. The Potato window moves to that window, and observe that the Potato

window still has its keyboard accelerator even though the Reset button doesn’t.

Okay, now things get weirder: hit the Tab key to put focus on the Potato window. Now hit

the Alt key to call up keyboard accelerator indicators. Notice that the indicators do not

show up on the Reset button. That’s because the indicators are already enabled in the Potato

window, so it doesn’t bother forwarding the message up to the root, since it figures the root

would just ignore it anyway.

Click the Reset button to remove keyboard indicators from both the Reset and Potato

windows. Go to the other window (where Reset has the keyboard indicators) and click in the

client area to steal the potato. Now you have the weird reverse state where the Reset button

has a keyboard indicator but the Potato button doesn’t. Use the Tab to put focus on the

4/4

Reset button, and then tap the Alt to call up keyboard indicators. Oops, nothing happens

because the Reset button already has keyboard indicators, so it decides that there is no work

to do.

Okay, so we see that if you have a window tree with a mix of UI states, things act weird. Next

time, we’ll try to fix it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

