
1/3

November 24, 2017

Getting a parent and child window to have the same UI
states

devblogs.microsoft.com/oldnewthing/20171124-00

Raymond Chen

Last time, we created a program that moved a child window between two parents in such a

way that the child and parent ended up with different UI states. We saw the weird things that

result from this mismatch, which is why the documentation told us, “you should synchronize

the UISTATE of both windows.” So let’s try it.

Take the program we had from last time and add the following:

UINT GetWindowUIState(HWND hwnd)
{
return LOWORD(SendMessage(hwnd, WM_QUERYUISTATE, 0, 0));
}

LRESULT RootWindow::HandleMessage(
 UINT uMsg, WPARAM wParam, LPARAM lParam)
{
...
 case WM_LBUTTONDOWN:
 if (GetParent(g_hwndPotato) != m_hwnd) {
 SetParent(g_hwndPotato, m_hwnd);

 // Synchronize the potato's UI state with its new parent.
 auto parentUIState = GetWindowUIState(m_hwnd);
 ResetUIStateForTree(g_hwndPotato, parentUIState);
 }
 break;

...
}

The first thing we do is introduce a helper function that gives a pretty name to the

WM_ QUERY UI STATE message. Since UI states are a 16-bit value, we keep only the least-

significant word from the message result.

https://devblogs.microsoft.com/oldnewthing/20171124-00/?p=97456
https://blogs.msdn.microsoft.com/oldnewthing/20171123-00/?p=97455

2/3

Meanwhile, in our window procedure, after we reparent the Potato button, we call an as-yet-

unimplemented function which tries to reset the UI state for a window tree to a specified

value.

Aside: Coming up with a name for that function was a bit of a struggle. The natural name

would be Set UI State For Tree , but the WM_ UPDATE UI STATE and WM_ CHANGE UI STATE

messages already use the word “set” to mean “turn on some bits (but don’t turn any bits off)”.

If I had called it Set UI State For Tree , then it might have been interpreted to mean that the

bits in the parent UI State are or’d into the destination UI state rather than copied.

Okay, so let’s try to write the Reset UI State For Tree function. The only interesting

operations available are UIS_ SET and UIS_ CLEAR . One of the turns bits on and the

other turns them off.

My first attempt at resetting the UI state went like this:

// Code in italics is wrong
void ResetUIStateForTree(HWND hwnd, UINT desiredState)
{
SendMessage(hwnd, WM_UPDATEUISTATE,
 MAKEWPARAM(UIS_SET, desiredState), 0);
SendMessage(hwnd, WM_UPDATEUISTATE,
 MAKEWPARAM(UIS_CLEAR, ~desiredState), 0);
}

We set all the bits that are set and clear all the bits that are clear. We use the WM_ UPDATE ‐

UI STATE message because that is the one that says “Start with the specified window, apply

the changes to it, and then propagate the changes to that window’s children.” If we had used

the WM_ CHANGE UI STATE message, then the request would have propagated out to the root

window, and the root window would have done nothing because we are telling the root

window to set bits in its UI state that are already set (and clear bits that are already clear).

Some playing around with this version of the function showed that setting the bits that are

set was working fine, but clearing the bits that are clear was not.

Reason: Parameter validation.

There are only three bits currently defined for the UI state, so ~uiState ends up passing a

bunch of bits that are invalid, so the call fails.

Okay, so we need to make sure not to try to set or clear bits that are not defined. But I don’t

want to hard-code the set of valid bits, because a future version of Windows might add a new

UI state bit, and I want to be able to reset those too.

This is what I came up with:

3/3

void ResetUIStateForTree(HWND hwnd, UINT desiredState)
{
auto currentState = GetWindowUIState(hwnd);
auto missingState = desiredState & ~currentState;
if (missingState) {
 SendMessage(hwnd, WM_UPDATEUISTATE,
 MAKEWPARAM(UIS_SET, missingState), 0);
}
auto extraState = currentState & ~desiredState;
if (extraState) {
 SendMessage(hwnd, WM_UPDATEUISTATE,
 MAKEWPARAM(UIS_CLEAR, extraState), 0);
}
}

We take the current state and compare it to the desired state. If there are any bits set in the

desired state that aren’t set in the current state, then set them. If there are any bits clear in

the desired state that aren’t clear in the current state, then clear them.

Sure, this sounds really simple, but it took us a few tries to get there.

Restricting the operation to bits that need to be set or cleared ensures that we operate only

on bits that the operating system has defined. (If they weren’t defined, then the operating

system wouldn’t have given them to us when we performed the query.)

After making these changes to the program from last time, run it again and play around with

setting the keyboard indicator states and moving the Potato window from one window to

another. This time, whenever the Potato window moves to a new window, we make its UI

state match that of its new parent.

That’s quite a lot of complexity packed into the instructions “you should synchronize the

UISTATE of both windows.”

Exercise: Suppose your UI policy is that the window frame should change its UI state to

match the potato it just stole. How would you change our sample program to implement that

policy?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

