
1/1

November 28, 2017

Beware of the leaked image list when using the
TVS_CHECKBOXES style

devblogs.microsoft.com/oldnewthing/20171128-00

Raymond Chen

The TVS_ CHECK BOXES tree view style is quirky, which is a nice way of saying that it’s crazy.

As we noted last time, the support for check boxes was migrated in from external code, and it

followed the pattern for external code. In particular, the state image list for the check boxes

needs to be manually destroyed, because when you created the check boxes manually, you

also needed to clean them up.

Yes, this goes against the general principle that things which were created by the control will

be destroyed by the control. Like I said, the TVS_ CHECK BOXES tree view style is quirky.

And if you fail to accommodate this quirk, you end up with a resource leak.

MSDN suggests that you use the TVM_ GET IMAGE LIST message to retrieve the state image

list, and then use Image List_ Destroy to destroy it. I prefer to exchange the image list

out by setting the state image list to null, then destroying the returned image list (which is

the previous image list). This avoids dangling references to a destroyed image list, and it also

means that if somehow you try to clean up the image lists twice, the second one will simply

not do anything since it won’t see anything to clean up.

ImageList_Destroy(TreeView_SetImageList(hwndTV, nullptr, TVSIL_STATE));

We take advantage of the fact that the HIMAGELIST parameter to the Image ‐

List_ Destroy function is marked _In_opt_ , which means that it is permissible to pass

nullptr .

Okay, with these two common errors out of the way, I’ll continue next time by beginning our

exploration of tree view check boxes from the ground up.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20171128-00/?p=97475
https://blogs.msdn.microsoft.com/oldnewthing/20171127-00/?p=97465
http://memprofiler.com/articles/treeviewresourceleak.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

