
1/3

December 6, 2017

How can I prevent the keyboard focus rectangle from
appearing on a control I created?

devblogs.microsoft.com/oldnewthing/20171206-00

Raymond Chen

A customer wanted to prevent keyboard focus rectangles from appearing on controls they

have created, like button controls. Presumably the reason is that they have customized the

control’s appearance to the point where the focus rectangle is no longer necessary. Drawing a

focus rectangle in addition to the customized focus appearance would be redundant.

Recall how the focus indicator is managed: The system sends WM_UPDATEUISTATE messages

to each control to tell it to alter its appearance and either add or remove keyboard focus and

accelerator indicators.

Therefore, if you don’t want a control to show keyboard focus indicators, you can intercept

this message before it reaches the control and prevent it from learning about the change in

state.

https://devblogs.microsoft.com/oldnewthing/20171206-00/?p=97526
https://blogs.msdn.microsoft.com/oldnewthing/20130516-00/?p=4343

2/3

#define STRICT

#include <windows.h>

#include <windowsx.h>

#include <commctrl.h>

LRESULT CALLBACK AlwaysHideFocusRectangleSubclassProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam,

 UINT_PTR idSubclass, DWORD_PTR dwRefData)

{

switch (uMsg) {

case WM_NCDESTROY:

 RemoveWindowSubclass(hwnd,

 AlwaysHideFocusRectangleSubclassProc, idSubclass);

break;

case WM_UPDATEUISTATE:

 // do not let them modify UISF_HIDEFOCUS

 wParam &= ~MAKELONG(0, UISF_HIDEFOCUS);

 break;

}
return DefSubclassProc(hwnd, uMsg, wParam, lParam);

}

INT_PTR CALLBACK DialogProc(HWND hdlg, UINT uMsg,

 WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

case WM_INITDIALOG:

 SendDlgItemMessage(hdlg, IDCANCEL, WM_UPDATEUISTATE,

 MAKELONG(UIS_SET, UISF_HIDEFOCUS), 0);

 SetWindowSubclass(GetDlgItem(hdlg, IDCANCEL),

 AlwaysHideFocusRectangleSubclassProc, 0, 0);

 return TRUE;

 case WM_COMMAND:

 if (GET_WM_COMMAND_ID(wParam, lParam) == IDCANCEL) {

 EndDialog(hdlg, 0);

 }

 break;

 }

 return FALSE;

}

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

DialogBox(hinst, MAKEINTRESOURCE(1), nullptr, DialogProc);

return 0;

}

// resource file

#include <windows.h>

https://devblogs.microsoft.com/oldnewthing/?p=41883

3/3

1 DIALOGEX 0, 0, 305, 280

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION |WS_SYSMENU

BEGIN

 DEFPUSHBUTTON "Button &1", IDOK, 0,0,50,50

 PUSHBUTTON "Button &2", IDCANCEL, 0,60,50,50

END

This sample program creates a dialog box with two buttons. Button 1 behaves normally, but

we customized the focus indicators for Button 2:

When the dialog box initializes, we tell Button 2 to set the UISF_ HIDEFOCUS flag in its UI

state. Note that this creates a window tree with an inconsistent UI state, which would

normally get you into trouble, but let’s play this out.

After forcing the focus rectangle to be hidden on Button 2, we subclass the button, and in our

subclass function, we clear the UISF_ HIDEFOCUS flag when we receive the WM_ UPDATE‐

UISTATE message, which blocks all attempts to initialize, set, or clear that state. This means

that the focus rectangle will remain hidden on Button 2.

When you run this program, you’ll see that the focus rectangle won’t appear on Button 2 even

if it is enabled on Button 1.

Notice that we did not block the WM_ CHANGEUISTATE message. This means that if focus is

on Button 2 and the user hits the Tab key to call up focus indicators, the request to show

indicators will still bubble out to the dialog box root, and then propagate down to all the

dialog box controls as a WM_ UPDATEUISTATE message. Button 1 will honor the request, but

Button 2 will ignore it. This is probably the behavior the user wants: They asked for focus

indicators, so we will show focus indicators in all the controls that wish to support them.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20171122-00/?p=97445
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

