
1/6

December 14, 2017

Creating double-precision integer multiplication with a
quad-precision result from single-precision multiplication
with a double-precision result using intrinsics (part 2)

devblogs.microsoft.com/oldnewthing/20171214-00

Raymond Chen

Last time, we converted our original assembly language code for creating double-precision

integer multiplication with a quad-precision result from single-precision multiplication with

a double-precision result to C++ code with intrinsics. We observed that the compiler was able

to optimize out some memory accesses by extracting the values using shifts.

Let’s see if we can tweak the code to remove the last of the memory accesses. Although the

Windows calling convention for x86 does not have many general purpose registers available

(only eax ecx , and edx), it does have eight xmm registers available, so we can use those

as temporary holding places.

https://devblogs.microsoft.com/oldnewthing/20171214-00/?p=97577
https://blogs.msdn.microsoft.com/oldnewthing/20171213-00/?p=97575
https://blogs.msdn.microsoft.com/oldnewthing/20141208-00/?p=43453

2/6

__m128i Multiply64x64To128(uint64_t x, uint64_t y)
{
 auto x128 = _mm_loadl_epi64((__m128i*) &x);
 auto term1 = _mm_unpacklo_epi32(x128, x128);

 auto y128 = _mm_loadl_epi64((__m128i*) &y);
 auto term2 = _mm_unpacklo_epi32(y128, y128);

 auto flip2 = _mm_shuffle_epi32(term2, _MM_SHUFFLE(1, 0, 3, 2));

 auto result = _mm_mul_epu32(term1, term2);
 auto crossterms = _mm_mul_epu32(term1, flip2);

 // Now apply the cross-terms to the provisional result
 unsigned temp;

 auto result1 = _mm_srli_si128(result, 4);
 auto carry = _addcarry_u32(0,
 _mm_cvtsi128_si32(result1),
 _mm_cvtsi128_si32(crossterms),
 &temp);
 result1 = _mm_cvtsi32_si128(temp);

 auto result2 = _mm_srli_si128(result, 8);
 crossterms = _mm_srli_si128(crossterms, 4);
 carry = _addcarry_u32(carry,
 _mm_cvtsi128_si32(result2),
 _mm_cvtsi128_si32(crossterms),
 &temp);
 result2 = _mm_cvtsi32_si128(temp);

 auto result3 = _mm_srli_si128(result, 12);
 _addcarry_u32(carry,
 _mm_cvtsi128_si32(result3),
 0,
 &temp);
 result3 = _mm_cvtsi32_si128(temp);

 crossterms = _mm_srli_si128(crossterms, 4);
 carry = _addcarry_u32(0,
 _mm_cvtsi128_si32(result1),
 _mm_cvtsi128_si32(crossterms),
 &temp);
 result1 = _mm_cvtsi32_si128(temp);

 crossterms = _mm_srli_si128(crossterms, 4);
 carry = _addcarry_u32(carry,
 _mm_cvtsi128_si32(result2),
 _mm_cvtsi128_si32(crossterms),
 &temp);
 result2 = _mm_cvtsi32_si128(temp);

3/6

 _addcarry_u32(carry,
 _mm_cvtsi128_si32(result3),
 0,
 &temp);
 result3 = _mm_cvtsi32_si128(temp);

 result = _mm_unpacklo_epi64(
 _mm_unpacklo_epi32(result, result1),
 _mm_unpacklo_epi32(result2, result3));

 return result;
}

We keep each of the four pieces of the result in a separate MMX register and convert it to an

integer for the purpose of the _addcarry_u32 , then convert it back to an MMX register

once the arithmetic is complete. At the end, recombine the four pieces into a single value.

The convert-on-demand-and-then-back pattern is

 carry = _addcarry_u32(carry,
 _mm_cvtsi128_si32(blah),
 _mm_cvtsi128_si32(crossterms),
 &temp);
 blah = _mm_cvtsi32_si128(temp);

where we take the low-order 32-bit value in blah , perform an add-with-carry with the low-

order 32-bit vlaue in crossterms , then save the result back into blah while retaining the

carry.

The other trick is that the lanes of the cross-terms are consumed only once each, and in

order, so we can shift them into position and use _mm_cvtsi128_si32 to pull them out one

at a time.

The resulting compiler-generated assembly goes like this:

4/6

 ; xmm0 = y = { 0, 0, C, D }
 movq xmm0, QWORD PTR _y$[esp-4]
 ; xmm1 = x = { 0, 0, A, B }
 movq xmm1, QWORD PTR _x$[esp-4]

 ; xmm0 = { C, C, D, D }
 punpckldq xmm0, xmm0

 ; xmm4 = { C, C, D, D }
 movaps xmm4, xmm0

 ; xmm1 = { A, A, B, B }
 punpckldq xmm1, xmm1

 ; xmm4 = { A * C, B * D } ; "result"
 pmuludq xmm4, xmm1

 ; xmm3 = { D, D, C, C }
 pshufd xmm3, xmm0, 78

 ; xmm3 = { A * D, B * C } ; "crossterms"
 pmuludq xmm3, xmm1

 ; ecx = result[1]
 movaps xmm0, xmm4
 psrldq xmm0, 4
 movd ecx, xmm0

 ; prepare to load result[2] from xmm0
 movaps xmm0, xmm4

 ; eax = crossterms[0]
 movd eax, xmm3

 ; prepare to load result[2] from xmm0
 psrldq xmm0, 8

 ; shift crossterms[1] into position
 psrldq xmm3, 4

 ; result[1] += crossterms[0], carry set appropriately
 add ecx, eax

 ; eax = crossterms[1]
 movd eax, xmm3

 ; shift crossterms[2] into position
 psrldq xmm3, 4

 ; xmm1 = result[1]
 movd xmm1, ecx

5/6

 ; ecx = result[2]
 movd ecx, xmm0

 ; prepare to load result[3] from xmm0
 movaps xmm0, xmm4
 psrldq xmm0, 12

 ; result[2] += crossterms[1] + carry, carry set appropriate
 adc ecx, eax

 ; eax = result[3]
 movd eax, xmm0

 ; result[3] += carry
 adc eax, 0

 ; xmm2 = result[2]
 movd xmm2, ecx

 ; ecx = result[1]
 movd ecx, xmm1

 ; xmm0 = result[3]
 movd xmm0, eax

 ; eax = crossterms[2]
 movd eax, xmm3

 ; shift crossterms[3] into position
 psrldq xmm3, 4

 ; result[1] += crossterms[2], carry set appropriately
 add ecx, eax

 ; eax = crossterms[3]
 movd eax, xmm3

 ; xmm1 = result[1]
 movd xmm1, ecx

 ; ecx = result[2]
 movd ecx, xmm2

 ; xmm4 = { *, *, result[1], result[0] }
 punpckldq xmm4, xmm1

 ; result[2] += crossterms[3]
 adc ecx, eax

 ; eax = result[3]
 movd eax, xmm0

6/6

 ; result[3] += carry
 adc eax, 0

 ; xmm2 = result[2]
 movd xmm2, ecx

 ; xmm1 = result[3]
 movd xmm1, eax

 ; xmm2 = { *, *, result[3], result[2] }
 punpckldq xmm2, xmm1

 ; xmm4 = { result[3], result[2], result[1], result[0] }
 punpcklqdq xmm4, xmm2

 ; set as return value
 movaps xmm0, xmm4
 ret

I could go even further and realize that one of the result# variables could be left in a

general-purpose register, since we need only two registers to perform the integer add. I also

could have shifted the result a little bit at a time the same way I shifted the cross-terms a little

bit at a time.

This version can perform all its work in registers, which means that there’s no need for stack

variables, which means that it becomes a lightweight leaf function. That means it doesn’t

need to create a stack frame.

Next time, we’ll move on to signed multiplication.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

